Cardiometabolic and Perceptual Responses to Body-Weight Resistance High-Intensity Interval Exercise in Boys

2020 ◽  
pp. 1-8
Author(s):  
Jeanette M. Ricci ◽  
Todd A. Astorino ◽  
Katharine D. Currie ◽  
Karin A. Pfeiffer

The majority of studies examining children’s responses to high-intensity interval exercise primarily utilized running; however, this modality does not require/include other important aspects of physical activity including muscular fitness. Purpose: To compare acute responses between a body weight resistance exercise circuit (CIRC) and treadmill-based (TM) high-intensity interval exercise. Method: A total of 17 boys (age = 9.7 [1.3] y) completed a graded exercise test to determine peak heart rate, peak oxygen uptake (VO2peak), and maximal aerobic speed. Sessions were randomized and counterbalanced. CIRC required 2 sets of 30-second maximal repetitions of 4 exercises. TM included eight 30-second bouts of running at 100% maximal aerobic speed. Both included 30-second active recovery between bouts. Blood lactate concentration was measured preexercise and postexercise. Rating of perceived exertion, affective valence, and enjoyment were recorded preexercise, after intervals 3 and 6, and postexercise. Results: Participants attained 88% (5%) peak heart rate and 74% (9%) VO2peak for CIRC and 89% (4%) peak heart rate and 81% (6%) VO2peak for TM, with a significant difference in percentage of VO2peak (P = .003) between protocols. Postexercise blood lactate concentration was higher following CIRC (5.0 [0.7] mM) versus TM (2.0 [0.3] mM) (P < .001). Rating of perceived exertion, affective valence, and enjoyment responses did not differ between protocols (P > .05). Conclusion: HR responses were near maximal during CIRC, supporting that this body-weight circuit is representative of high-intensity interval exercise.

Author(s):  
Natalia Danek ◽  
Marcin Smolarek ◽  
Kamil Michalik ◽  
Marek Zatoń

Background: Knowledge of acute responses to different sprint interval exercise (SIE) helps to implement new training programs. The aim of this study was to compare the acute physiological, metabolic and perceptual responses to two different SIE cycling protocols with different recovery durations. Methods: Twelve healthy, active male participants took part in this study and completed four testing sessions in the laboratory separated by a minimum of 72h. Two SIE protocols were applied in randomized order: SIE6×10”/4’—six “all-out” repeated 10-s bouts, interspersed with 4-min recovery; and SIESERIES—two series of three “all-out” repeated 10-s bouts, separated by 30-s recovery and 18-min recovery between series. Protocols were matched for the total work time (1 min) and recovery (20 min). Results: In SIESERIES, peak oxygen uptake and peak heart rate were significantly higher (p < 0.05), without differences in peak blood lactate concentration and mean rating of perceived exertion compared to SIE6×10”/4’. There were no differences in peak power output, peak oxygen uptake and peak heart rate between both series in SIESERIES. Conclusions: Two series composed of three 10-s “all-out” bouts in SIESERIES protocol evoked higher cardiorespiratory responses, which can provide higher stimulus to improve aerobic fitness in regular training.


2021 ◽  
Vol 12 ◽  
Author(s):  
Todd A. Astorino ◽  
Danielle Emma

This study compared changes in oxygen uptake (VO2), heart rate (HR), blood lactate concentration (BLa), affective valence, and rating of perceived exertion (RPE) between sessions of high intensity interval exercise (HIIE) performed on the arm (ACE) and leg cycle ergometer (LCE). Twenty three active and non-obese men and women (age and BMI=24.7±5.8year and 24.8±3.4kg/m2) initially underwent graded exercise testing to determine VO2max and peak power output (PPO) on both ergometers. Subsequently on two separate days, they performed 10 1min intervals of ACE or LCE at 75 %PPO separated by 1min of active recovery at 10 %PPO. Gas exchange data, HR, and perceptual responses were obtained continuously and blood samples were acquired pre- and post-exercise to assess the change in BLa. VO2max and PPO on the LCE were significantly higher (p&lt;0.001) than ACE (37.2±6.3 vs. 26.3±6.6ml/kg/min and 259.0±48.0 vs. 120.0±48.1W). Mean VO2 (1.7±0.3 vs. 1.1±0.3L/min, d=2.3) and HR (149±14 vs. 131±17 b/min, d=2.1) were higher (p&lt;0.001) in response to LCE vs. ACE as was BLa (7.6±2.6 vs. 5.3±2.5mM, d=2.3), yet there was no difference (p=0.12) in peak VO2 or HR. Leg cycling elicited higher relative HR compared to ACE (81±5 vs. 75±7 %HRmax, p=0.01), although, there was no difference in relative VO2 (63±6 vs. 60±8 %VO2max, p=0.09) between modes. Affective valence was lower during LCE vs. ACE (p=0.003), although no differences in enjoyment (p=0.68) or RPE (p=0.59) were demonstrated. Overall, HIIE performed on the cycle ergometer elicits higher relative heart rate and blood lactate concentration and a more aversive affective valence, making these modes not interchangeable in terms of the acute physiological and perceptual response to interval based exercise.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiago Cetolin ◽  
Anderson Santiago Teixeira ◽  
Juliano Fernandes da Silva ◽  
Alessandro Haupenthal ◽  
Fábio Yuzo Nakamura ◽  
...  

This study aimed to examine the acute physiological effect of shuttle-run-based high-intensity intermittent exercise (HIIE) performed at the same relative speed (i. e., 100% PST−CAR) on sand (SAND) and grass (GRASS) in male junior soccer players. Seven Under-23 Brazilian national league (“Série A”) soccer players completed four testing sessions in either SAND or GRASS surface condition. The first two testing sessions consisted of performing a maximal progressive shuttle-run field protocol until volitional exhaustion (Carminatti's test, T-CAR), whereas the third and fourth sessions comprised a HIIE session on each ground surface. The HIIE session consisted of three 5-min bouts [12 s shuttle-run (with a direction change every 6 s)/12 s of passive rest] performed at 100% of T-CAR peak speed (PST−CAR) with 3 min of passive recovery between sets. Measurements of oxygen uptake (VO2), heart rate (HR), blood lactate concentration ([La]), and rating of perceived exertion (RPE) were performed during all conditions. The SAND condition elicited significantly higher %VO2peak (94.58 ± 2.73 vs. 87.45 ± 3.31%, p &lt; 0.001, d = 2.35), %HRpeak (93.89 ± 2.63 vs. 90.31 ± 2.87%, p &lt; 0.001, d = 1.30), RPE (8.00 ± 0.91 vs. 4.95 ± 1.23 a.u., p &lt; 0.001, d = 2.82), and [La] (10.76 ± 2.37 vs. 5.48 ± 1.13 mmol/L, p &lt; 0.010, d = 2.84). This study showed that higher internal workloads are experienced by the players during a single HIIE session performed on a softer surface as SAND, even when the exercise intensity was individualized based on 100%PST−CAR.


Kinesiology ◽  
2019 ◽  
Vol 51 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Blaine E. Arney ◽  
Jos J. de Koning ◽  
Carl Foster ◽  
John P. Porcari ◽  
Richard P. Mikat ◽  
...  

The Rating of Perceived Exertion (RPE) is an important measure of exercise intensity, which is useful both as a primary and adjunctive method of exercise prescription. However, there are multiple variants of the Borg RPE scale, primarily the Borg 6-20 RPE scale (BORG-RPE) and the Borg Category-Ratio-10 scale (BORG-CR10). There are inadequate data available to address the comparability and interchangeability of these two widely used scales. Well-trained non-athletes performed two increment cycle tests, with each scale used in a random sequence. Subjects also performed interval sessions at three intensities (50, 75 and 85% of peak power output) with each scale used in a random sequence. There were very large correlations during the incremental exercise between the conventional physiological measures (% heart rate reserve – r=0.89 &amp; r=.87); and %VO2reserve (r=.88 &amp; r=.90) and RPE measured by either the BORG-RPE or the BORGCR10, respectively. This pattern was also evident during the interval exercise (% heart rate reserve (r=.85 &amp; r=.84; and blood lactate concentration – r=.74 &amp; r=.78) and RPE measured by either the BORG-RPE or the BORG-CR10, respectively. The relationship between RPE measured by the BORG-RPE and the BORGCR10 was large and best described by a non-linear relationship for both the incremental (R2=89) and the interval (R2=.89) exercise. The incremental and interval curves were virtually overlapping. We concluded that the two most popular versions of the RPE scale, BORG-RPE and BORG-CR10, were both highly related to the conventional physiological measures and very strongly related to each other, with an easily described conversion.


Author(s):  
Isabela R. MARÇAL ◽  
Pedro G. FALQUEIRO ◽  
Bianca FERNANDES ◽  
Awassi Y. NGOMANE ◽  
Vanessa T. AMARAL ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Jeanette M. Ricci ◽  
Katharine D. Currie ◽  
Todd A. Astorino ◽  
Karin A. Pfeiffer

Girls’ acute responses to group-based high-intensity interval exercise (HIIE) are not well characterized. Purpose: To compare acute responses to treadmill-based HIIE (TM) and body-weight resistance exercise circuit (CIRC) and to CIRC performed in a small-group setting (group CIRC). Method: Nineteen girls (9.1 [1.1] y) completed exercise testing on a TM to determine peak oxygen uptake, peak heart rate (HRpeak), and maximal aerobic speed. The TM involved eight 30-second sprints at 100% maximal aerobic speed. The CIRC consisted of 8 exercises of maximal repetitions performed for 30 seconds. Each exercise bout was followed by 30 seconds of active recovery. The blood lactate concentration was assessed preexercise and postexercise. The ratings of perceived exertion, affective valence, and enjoyment were recorded at preexercise, Intervals 3 and 6, and postexercise. Results: The mean heart rate was higher during group CIRC (92% [7%] HRpeak) than CIRC (86% [7%] HRpeak) and TM (85% [4%] HRpeak) ( = .49). The mean oxygen uptake equaled 76% (11%) of the peak oxygen uptake for CIRC and did not differ from TM (d = 0.02). The CIRC elicited a greater postexercise blood lactate concentration versus TM (5.8 [1.7] vs 1.4 [0.4] mM, d = 3.61). The perceptual responses were similar among conditions (P > .05), and only the rating of perceived exertion increased during exercise ( = .78). Conclusion: Whether performed individually or in a small group, CIRC represents HIIE and may be a feasible alternative to running-based HIIE.


2019 ◽  
Vol 44 (4) ◽  
pp. 348-356 ◽  
Author(s):  
Ariane Aparecida Viana ◽  
Bianca Fernandes ◽  
Cristian Alvarez ◽  
Guilherme Veiga Guimarães ◽  
Emmanuel Gomes Ciolac

We tested the hypothesis that rating of perceived exertion (RPE) is a tool as efficient as the heart rate (HR) response to the cardiopulmonary exercise test (CPX) for prescribing and self-regulating high-intensity interval exercise (HIIE), and that metabolic and hemodynamic response to HIIE is superior than to continuous moderate-intensity exercise (MICE) in individuals with type 2 diabetes mellitus (T2DM). Eleven participants (age = 52.3 ± 3 years) underwent HIIE prescribed and self-regulated by RPE (HIIERPE; 25 min), HIIE prescribed and regulated by an individual’s HR response to CPX (HIIEHR; 25 min), MICE prescribed and self-regulated by RPE (30 min) and control (30 min of seated resting) intervention in random order. HR, blood pressure (BP), capillary glucose, endothelial reactivity, and carotid-femoral pulse wave velocity were assessed before, immediately after, and 45 min after each intervention. Exercise HR, speed, and distance were measured during exercise sessions. Twenty-four-hour ambulatory BP was measured after each intervention. Exercise HR, speed, and distance were similar between HIIERPE and HIIEHR. BP response was not different among HIIERPE, HIIEHR, and MICE. Capillary glycaemia reduction was greater (P < 0.05) after HIIERPE (48.6 ± 9.6 mg/dL) and HIIEHR (47.2 ± 9.5 mg/dL) than MICE (29.5 ± 11.5 mg/dL). Reduction (P < 0.05) in 24-h (6.7 ± 2.2 mm Hg) and tendency toward reduction (P = 0.06) in daytime systolic (7.0 ± 2.5 mm Hg) ambulatory BP were found only after HIIERPE. These results suggest that HIIE is superior to MICE for reducing glycaemia and ambulatory BP, and that the 6–20 RPE scale is a useful tool for prescribing and self-regulating HIIE in individuals with T2DM.


2018 ◽  
Vol 13 (9) ◽  
pp. 1215-1222 ◽  
Author(s):  
Theo Ouvrard ◽  
Alain Groslambert ◽  
Gilles Ravier ◽  
Sidney Grosprêtre ◽  
Philippe Gimenez ◽  
...  

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.


2018 ◽  
Vol 13 (8) ◽  
pp. 1034-1041
Author(s):  
Maria C. Madueno ◽  
Vincent J. Dalbo ◽  
Joshua H. Guy ◽  
Kate E. Giamarelos ◽  
Tania Spiteri ◽  
...  

Purpose: To investigate the physiological and performance effects of active and passive recovery between repeated-change-of-direction sprints. Methods: Eight semiprofessional basketball players (age: 19.9 [1.5] y; stature: 183.0 [9.6] cm; body mass: 77.7 [16.9] kg; body fat: 11.8% [6.3%]; and peak oxygen consumption: 46.1 [7.6] mL·kg−1·min−1) completed 12 × 20-m repeated-change-of-direction sprints (Agility 5-0-5 tests) interspersed with 20 seconds of active (50% maximal aerobic speed) or passive recovery in a randomized crossover design. Physiological and perceptual measures included heart rate, oxygen consumption, blood lactate concentration, and rating of perceived exertion. Change-of-direction speed was measured during each sprint using the change-of-direction deficit (CODD), with summed CODD time and CODD decrement calculated as performance measures. Results: Average heart rate (7.3 [6.4] beats·min−1; P = .010; effect size (ES) = 1.09; very likely) and oxygen consumption (4.4 [5.0] mL·kg−1·min−1; P = .12; ES = 0.77; unclear) were moderately greater with active recovery compared with passive recovery across sprints. Summed CODD time (0.87 [1.01] s; P = .07; ES = 0.76, moderate; likely) and CODD decrement (8.1% [3.7%]; P < .01; ES = 1.94, large; almost certainly) were higher with active compared with passive recovery. Trivial–small differences were evident for rating of perceived exertion (P = .516; ES = 0.19; unclear) and posttest blood lactate concentration (P = .29; ES = 0.40; unclear) between recovery modes. Conclusions: Passive recovery between repeated-change-of-direction sprints may reduce the physiological stress and fatigue encountered compared with active recovery in basketball players.


Sign in / Sign up

Export Citation Format

Share Document