Acute and Short-Term Response to Different Loading Conditions During Resisted Sprint Training

2020 ◽  
Vol 15 (7) ◽  
pp. 997-1004
Author(s):  
Beatriz Bachero-Mena ◽  
Miguel Sánchez-Moreno ◽  
Fernando Pareja-Blanco ◽  
Borja Sañudo

Purpose: To analyze the acute and short-term physical and metabolic responses to resisted sprint training with 5 different loading conditions (0%, 20%, 40%, 60%, and 80% body mass). Methods: Fifteen male participants performed 8 × 20-m sprints with 2-minute rests between sprints with 5 different loading conditions. Subjects performed a battery of tests (creatine kinase and lactate concentrations, countermovement jump, 20-m sprint, and isokinetic knee extension and flexion contractions) at 3 different time points (preexercise [PRE], postexercise [POST], and 24-h postexercise [POST24H]). Results: Results revealed significant increases in blood lactate for all loading conditions; however, as sled loadings increased, higher blood lactate concentrations and increments in sprint times during the training session were observed. Significant increases in creatine kinase concentration were observed from PRE to POST24H for all loading conditions. Concerning physical performance, significant decreases in countermovement-jump height from PRE to POST were found for all loading conditions. In addition, significant decreases in 20-m sprint performance from PRE to POST were observed for 0% (P = .05) and 80% (P = .02). No significant differences with PRE were observed for the physical-performance variables at POST24H, except for 20% load, which induced a significant decrease in mean power during knee flexion (P = .03). Conclusions: These results suggest that the higher the load used during resisted sprint training, the higher the physical-performance impairments and metabolic response produced, although all loading conditions led to a complete recovery of sprint performance at POST24H.

Author(s):  
Marcin Maciejczyk ◽  
Renata Błyszczuk ◽  
Aleksander Drwal ◽  
Beata Nowak ◽  
Marek Strzała

The aim of the study was to determine the effects of short-term (4 weeks, twice a week: 8 sessions) plyometric training on agility, jump, and repeated sprint performance in female soccer players. The study comprised 17 females performing this sports discipline. The players were randomly divided into two groups: with plyometric training (PLY) and the control (CON). All players followed the same training program, but the PLY group also performed plyometric exercises. Tests used to evaluate physical performance were carried out immediately before and after PLY. After implementing the short PLY training, significant improvement in jump performance (squat jump: p = 0.04, ES = 0.48, countermovement jump: p = 0.009, ES = 0.42) and agility (p = 0.003, ES = 0.7) was noted in the PLY group. In the CON group, no significant (p > 0.05) changes in physical performance were observed. In contrast, PLY did not improve repeated sprint performance (p > 0.05) among female soccer players. In our research, it was shown that PLY can also be effective when performed for only 4 weeks instead of the 6–12 weeks typically applied.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Thomas Haugen ◽  
Stephen Seiler ◽  
Øyvind Sandbakk ◽  
Espen Tønnessen

AbstractDespite a voluminous body of research devoted to sprint training, our understanding of the training process leading to a world-class sprint performance is limited. The objective of this review is to integrate scientific and best practice literature regarding the training and development of elite sprint performance. Sprint performance is heavily dependent upon genetic traits, and the annual within-athlete performance differences are lower than the typical variation, the smallest worthwhile change, and the influence of external conditions such as wind, monitoring methodologies, etc. Still, key underlying determinants (e.g., power, technique, and sprint-specific endurance) are trainable. In this review, we describe how well-known training principles (progression, specificity, variation/periodization, and individualization) and varying training methods (e.g., sprinting/running, technical training, strength/power, plyometric training) are used in a sprint training context. Indeed, there is a considerable gap between science and best practice in how training principles and methods are applied. While the vast majority of sprint-related studies are performed on young team sport athletes and focus on brief sprints with maximal intensity and short recoveries, elite sprinters perform sprinting/running over a broad range of distances and with varying intensity and recovery periods. Within best practice, there is a stronger link between choice of training component (i.e., modality, duration, intensity, recovery, session rate) and the intended purpose of the training session compared with the “one-size-fits-all” approach in scientific literature. This review provides a point of departure for scientists and practitioners regarding the training and development of elite sprint performance and can serve as a position statement for outlining state-of-the-art sprint training recommendations and for generation of new hypotheses to be tested in future research.


Sports ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 171
Author(s):  
John M. Radnor ◽  
Jacob Staines ◽  
James Bevan ◽  
Sean P. Cumming ◽  
Adam L. Kelly ◽  
...  

This study aimed to: (1) examine differences in physical performance across birth-quartiles and maturity-status, and (2) determine the relationships among relative age, maturation and physical performance in young male soccer players. The sample included 199 males aged between 8.1 and 18.9 years, from two professional soccer academies in the English Football League. Data were collected for height, weight, self-reported biological parent heights, 30 m sprint time and countermovement jump (CMJ) height. Relative age was conveyed as a decimal, while maturity status was determined as the percentage of predicted adult height (PAH). There were no significant differences in any measure between birth quartiles, however early maturers outperformed on-time and later maturers in most performance measures. Pearson-product-moment correlations revealed that maturation was inversely associated with 30 m sprint time in U12 to U16 (r = −0.370–0.738; p < 0.05), but only positively associated with CMJ performance in U12 (r = 0.497; p < 0.05). In contrast, relative age was unrelated to sprint performance and only significantly associated with superior CMJ performance in U16. This study indicates that maturity has a greater association with sprint performance than relative age in English male academy soccer players. Practitioners should monitor and assess biological maturation in young soccer players to attempt to control for the influence on physical performance, and avoid biasing selection on absolute performance rather than identifying the most talented player.


2018 ◽  
Vol 7 (4) ◽  
pp. 1-12
Author(s):  
Paul J Byrne ◽  
Jeremy Moody ◽  
Stephen-Mark Cooper ◽  
Sharon Kinsella

The purposes of this study were to a) compare a 4-min to an 8-min rest interval between composite training (jump-sprint combination) repetitions in a single session to allow for the recovery of neuromuscular and bounce drop-jump (BDJ) performance and b) investigate if super compensation would occur after 168hrs of rest. Twelve players were randomly assigned to either a 4-min or an 8-min rest interval group. Participants first completed a BDJ test to identify individual BDJ drop heights followed by a 20m sprint test. Seventy-two hours later, a composite training session of two repetitions (three BDJs followed by a 20m sprint after a 15s rest) with either a 4-min or an 8-min rest interval was performed. A three repetition maximum (3RM) back squat strength test, a BDJ, countermovement jump (CMJ) and a sprint performance test were completed 10-mins pre- and immediately post-session, and 168 hrs post-session. CMJ force (8-min group) and BDJ (height and reactive strength index (RSI)) measures decreased significantly post-session (4-min and 8-min groups; P ≤ 0.05). Pre-session to 168 hrs post-session, relative 3RM back squat strength and 20m sprint performance increased significantly for the 4-min group only (P ≤ 0.05). In conclusion, a 4-min composite training inter-repetition rest interval leads to a significant decline in BDJ measures (RSI and jump height) which may act as fatigue markers for monitoring. However, 4-mins provides sufficient recovery during the session which, in conjunction with 168 hrs of recovery, causes super compensation in neuromuscular performance in hurling players.


2018 ◽  
Vol 13 (8) ◽  
pp. 1100-1106 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Guillermo Sánchez-Martínez ◽  
Elaia Torrontegi ◽  
Zigor Montalvo ◽  
Alejandro Lucia ◽  
...  

Purpose: Enhanced external counterpulsation (EECP) is a recovery strategy whose use has increased in recent years owing to the benefits observed in the clinical setting in some cardiovascular diseases (ie, improvement of cardiovascular function). However, its claimed effectiveness for the enhancement of exercise recovery has not been analyzed in athletes. The aim of this study was to determine the effectiveness of EECP on short-term recovery after a fatiguing exercise bout. Methods: Twelve elite junior triathletes (16 [2] y) participated in this crossover counterbalanced study. After a high-intensity interval training session (6 bouts of 3-min duration at maximal intensity interspersed with 3-min rest periods), participants were assigned to recover during 30 min with EECP (80 mm Hg) or sham (0 mm Hg). Measures of recovery included performance (jump height and mean power during an 8-min time trial), metabolic (blood lactate concentration at several time points), autonomic (heart-rate variability at several time points), and subjective (rating of perceived exertion [RPE] and readiness to compete) outcomes. Results: There were no differences between EECP and sham in mean RPE or power output during the high-intensity interval training session, which elicited a significant performance impairment, vagal withdrawal, and increased blood lactate and RPE in both EECP and sham conditions (all P < .05). No significant differences were found in performance, metabolic, or subjective outcomes between conditions at any time point. A significantly lower high-frequency power (P < .05, effect size = 1.06), a marker of parasympathetic activity, was observed with EECP at the end of the recovery phase. Conclusion: EECP did not enhance short-term recovery after a high-intensity interval training session in healthy, highly trained individuals.


2015 ◽  
Vol 10 (5) ◽  
pp. 664-669 ◽  
Author(s):  
Jocelyn K. Mara ◽  
Kevin G. Thompson ◽  
Kate L. Pumpa ◽  
Nick B. Ball

Purpose:To investigate the variation in training demands, physical performance, and player well-being across a women’s soccer season.Methods:Seventeen elite female players wore GPS tracking devices during every training session (N = 90) throughout 1 national-league season. Intermittent high-speed-running capacity and 5-, 15-, and 25-m-sprint testing were conducted at the beginning of preseason, end of preseason, midseason, and end of season. In addition, subjective well-being measures were selfreported daily by players over the course of the season.Results:Time over 5 m was lowest at the end of preseason (mean 1.148 s, SE 0.017 s) but then progressively deteriorated to the end of the season (P < .001). Sprint performance over 15 m improved by 2.8% (P = .013) after preseason training, while 25-m-sprint performance peaked at midseason, with a 3.1% (P = .05) improvement from the start of preseason, before declining at the end of season (P = .023). Training demands varied between phases, with total distance and high-speed distance greatest during preseason before decreasing (P < .001) during the early- and late-season phases. Endurance capacity and well-being measures did not change across training phases.Conclusions:Monitoring training demands and subsequent physical performance in elite female soccer players allow coaches to ensure that training periodization goals are being met and related positive training adaptations are being elicited.


2020 ◽  
Vol 15 (10) ◽  
pp. 1356-1362
Author(s):  
Fernando Pareja-Blanco ◽  
Eduardo Sáez de Villarreal ◽  
Beatriz Bachero-Mena ◽  
Ricardo Mora-Custodio ◽  
José Antonio Asián-Clemente ◽  
...  

Purpose: This study aimed to compare the effects of unresisted versus heavy sled sprint training (0% vs 40% body mass [BM]) on sprint performance in women. Moreover, the effects of the aforementioned loads on resisted sprint and jump performance were analyzed. Methods: Twenty-eight physically active women were randomly allocated into 2 groups: unloaded sprint training group (G0%, n = 14), and resisted sprint training with 40% BM group (G40%, n = 14). Pretraining and posttraining assessments included countermovement jump, unloaded 30-m sprint, and 20-m sprint with 20%, 40%, 60%, and 80% BM. Times to cover 0 to 10 (T10), 0 to 20 (T20), 0 to 30 (T30), 10 to 20 (T10–20), 20 to 30 (T20–30), and 10 to 30 m (T10–30) were recorded. Both groups were trained once a week for 8 weeks and completed the same training program, but with different loads (0% vs 40% BM). Results: No significant time × group interactions were observed. For unloaded sprint performance, G0% showed significant (P = .027) decreases only in T10–20, while G40% attained significant decreases in T30 (P = .021), T10–30 (P = .015), and T20–30 (P = .003). Regarding resisted sprint performance, G0% showed significant (P = .010) improvements only for the 20% BM condition. The G40% group attained significant improvements in all loading conditions (20%, 40%, 60%, and 80% BM). Both groups showed significant improvements (P < .001) in countermovement jump height. Conclusions: In physically active women, no significant differences in sprint and countermovement jump performance were detected after 8 weeks of resisted and unresisted sprint training programs. Future studies should, therefore, be devoted to how sprint training should be individualized to maximize performance.


2016 ◽  
Vol 53 (1) ◽  
pp. 231-247 ◽  
Author(s):  
Maamer Slimani ◽  
Karim Chamari ◽  
Bianca Miarka ◽  
Fabricio B. Del Vecchio ◽  
Foued Chéour

AbstractPlyometric training (PT) is a very popular form of physical conditioning of healthy individuals that has been extensively studied over the last decades. In this article, we critically review the available literature related to PT and its effects on physical fitness in team sport athletes. We also considered studies that combined PT with other popular training modalities (e.g. strength/sprint training). Generally, short-term PT (i.e. 2-3 sessions a week for 4-16 weeks) improves jump height, sprint and agility performances in team sport players. Literature shows that short PT (<8 weeks) has the potential to enhance a wide range of athletic performance (i.e. jumping, sprinting and agility) in children and young adult amateur players. Nevertheless, 6 to 7 weeks training appears to be too short to improve physical performance in elite male players. Available evidence suggests that short-term PT on non-rigid surfaces (i.e. aquatic, grass or sand-based PT) could elicit similar increases in jumping, sprinting and agility performances as traditional PT. Furthermore, the combination of various plyometric exercises and the bilateral and unilateral jumps could improve these performances more than the use of single plyometric drills or traditional PT. Thus, the present review shows a greater effect of PT alone on jump and sprint (30 m sprint performance only) performances than the combination of PT with sprint/strength training. Although many issues related to PT remain to be resolved, the results presented in this review allow recommending the use of well-designed and sport-specific PT as a safe and effective training modality for improving jumping and sprint performance as well as agility in team sport athletes.


2006 ◽  
Vol 18 (4) ◽  
pp. 136
Author(s):  
JR Clark

Objective. To determine the effect of short-term creatine supplementation plus a protein-carbohydrate formula on high-intensity exercise performance and recovery. Design. A repeated-measures, experimental study, employing a randomised, double-blind, placebo-controlled, group comparison design was used. Interventions. Thirty active but not sprint-trained male subjects were randomly assigned to 1 of 3 groups: creatine plus protein-carbohydrate formula (CRF); creatine only (CRE); and control (CON). All groups were exposed to the same high-intensity sprint exercise programme, 3 times per week for 30 days. Main outcome measures. Dependant variables included total repeat sprint distance, fatigue index, perceived muscle pain, and blood lactate, urea, creatine kinase, and cortisol concentrations. Results. All groups significantly (p ≤ 0.05) increased total sprint distance and decreased blood urea concentrations. There were no significant changes in blood lactate or cortisol concentrations in any group. CRF showed significant decreases (p ≤ 0.05) in fatigue index, muscle pain, and creatine kinase concentration. However, no significant differences were found between groups. Conclusion. Short-term creatine supplementation with or without protein-carbohydrate supplementation does not appear to enhance performance or recovery significantly over high-intensity exercise training alone in non-sprint-trained individuals. A longer trial period may be required to evaluate effect on recovery more conclusively. In addition, the prime importance of physical conditioning, and in particular task-specific exercise training, in stimulating performance and recovery adaptations is highlighted. South African Journal of Sports Medicine Vol. 18 (4) 2006: pp. 136-140


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
David Rodríguez-Rosell ◽  
Eduardo Sáez de Villarreal ◽  
Ricardo Mora-Custodio ◽  
José Antonio Asián-Clemente ◽  
Beatriz Bachero-Mena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document