Increased Trunk Kinetics Observed During Dose-Specific Trunk Lean Gait Modification

2021 ◽  
Vol 37 (5) ◽  
pp. 425-431
Author(s):  
Oladipo Eddo ◽  
João R. Vaz ◽  
Jaime Ludwick ◽  
Bryndan Lindsey ◽  
Joel Martin ◽  
...  

Trunk modification is associated with knee abduction moment reduction in both healthy groups and individuals with knee osteoarthritis. Ambulatory-related changes in trunk kinematics have been implicated in increased trunk moment. The purpose of this study was to investigate the effect of dose-specific lateral trunk lean on trunk kinetics during ipsilateral and contralateral stance phases. Nineteen healthy participants completed 10 baseline walking trials, followed by 10 trials employing lateral trunk lean. Trunk modification magnitudes were determined based on the average baseline trunk angle. Five trials of both small and large trunk modification magnitudes were completed. Visual real-time biofeedback was projected as a line graph displaying the trunk angle during stance, and a highlighted bandwidth was designated the target range. A 1-factor repeated-measures analysis of variance or Friedman test was used to assess differences between the conditions (P < .05) in trunk dependent measures. Trunk kinetics displayed significant increases, even during modest modifications to the trunk angle. The participants experienced increased peak frontal plane trunk moment and angular impulse during ipsilateral stance. The observed increase in the peak lateral joint reaction force is suggestive of a compromised loading environment at the spine. Implementing trunk modification might result in unintended secondary changes along the kinetic chain, but further investigation is required.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroshige Tateuchi ◽  
Haruhiko Akiyama ◽  
Koji Goto ◽  
Kazutaka So ◽  
Yutaka Kuroda ◽  
...  

Abstract Background A larger daily cumulative hip loading, which is the product of the external hip adduction moment (HAM) impulse during gait and the number of steps per day has been identified as a factor associated with the progression of secondary hip osteoarthritis (OA). The cause of the increased HAM impulse in patients with hip OA has not been identified. The purpose of this study was to identify the gait parameters associated with HAM impulse during gait in patients with secondary hip OA. Methods Fifty-five patients (age 22–65 years) with mild-to-moderate secondary hip OA participated in this cross-sectional study. The HAM impulse during gait was measured using a three-dimensional gait analysis system. To identify the gait parameters associated with HAM impulse, hierarchical multiple regression analysis was performed. The first model (basic model) included body weight and stance phase duration. The second models included gait parameters (gait speed; ground reaction force [GRF] in frontal plane; and hip, pelvic, and trunk angle in frontal plane) and hip pain in addition to the basic model. Results Body weight and stance phase duration explained 61% of the variance in HAM impulse. In the second model, which took into account body weight and stance phase duration, hip adduction angle (9.4%), pelvic tilt (6.5%), and trunk lean (3.2%) in addition to GRF explained the variance in the HAM impulse. Whereas larger hip adduction angle and pelvic tilt toward the swing limb were associated with a larger HAM impulse, larger trunk lean toward the stance limb was associated with smaller HAM impulse. Conclusion In patients with excessive hip adduction and pelvic tilt toward the swing limb during gait, gait modification may contribute to the reduction of hip joint loading.


2008 ◽  
Vol 17 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Becky L. Heinert ◽  
Thomas W. Kernozek ◽  
John F. Greany ◽  
Dennis C. Fater

Objective:To determine if females with hip abductor weakness are more likely to demonstrate greater knee abduction during the stance phase of running than a strong hip abductor group.Study Design:Observational prospective study design.Setting:University biomechanics laboratory.Participants:15 females with weak hip abductors and 15 females with strong hip abductors.Main Outcome Measures:Group differences in lower extremity kinematics were analyzed using repeated measures ANOVA with one between factor of group and one within factor of position with a significance value of P < .05.Results:The subjects with weak hip abductors demonstrated greater knee abduction during the stance phase of treadmill running than the strong group (P < .05). No other significant differences were found in the sagittal or frontal plane measurements of the hip, knee, or pelvis.Conclusions:Hip abductor weakness may influence knee abduction during the stance phase of running.


2014 ◽  
Vol 33 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Deborah Solomonow-Avnon ◽  
Alon Wolf ◽  
Amir Herman ◽  
Nimrod Rozen ◽  
Amir Haim

Author(s):  
David Kingston

The bodyweight squat is routinely used for conditioning of the knee musculature. In the performance of this exercise, modifications in the initial standing position may result in altered frontal plane kneel loading, and hence may potentially be used for targeted exercise prescription. The purpose of this study is to quantify the frontal plane mechanical loading on the knee joint whilst performing the bodyweight squat exercise, and to examine the effects of varying stance width and foot rotation angle. Twenty-four participants (14 males) performed 4 randomized sets of 8 repetitions of the body weight resistant squat exercise in the following conditions: 1) Shoulder width (SW) stance with parallel feet; 2) SW stance with feet externally rotated 30°; 3) 140% SW stance with parallel feet, and; 4) 140% SW stance with the feet externally rotated by 30°. The adduction/abduction knee joint moment experienced across conditions was calculated using inverse dynamics procedures. Moment waveforms were subjected to Principal Component (PC) analysis, with 3 PC’s retained based on a 90% trace criteria. Following, a 1-way repeated measures ANOVA and pair wise comparisons were used to discern differences between conditions. Omnibus test results indicate significant differences across conditions for PC1 and PC2 (p<0.01), Post hoc comparisons and waveform interpretation of PC1 extreme scores showed that the magnitude of the adduction moment was higher throughout the movement in the foot rotated conditions vs. the parallel feet conditions in both stance widths (mean Z scores .69 & .65 vs. -.88 & -.45, p<0.01, respectively). For PC2, significant differences were found between the 2 parallel feet conditions and the 2 foot rotated conditions, as well as between the foot conditions in the wide stance squats. PC2 differences were interpreted as phase shift operators. We found that modification of foot rotation slightly alters the magnitude and timing of knee adduction moment component during performance of the body weight squat. The observed magnitude differences are presumably a consequence of alteration in the location of the point of application of the ground reaction force during the initial standing posture. The findings may assist clinicians in exercise prescription decision making.


Author(s):  
Luke Chowning ◽  
John Krzyszkowski ◽  
Brandon Nunley ◽  
Ryan Lanier ◽  
Isabella Gonzales ◽  
...  

The execution strategy of technical dance movements is constrained by aesthetic and qualitative artistic requirements. As such, there are limited leap-landing strategies that may be used by dancers when executing a grand jeté or saut de chat. The purpose of this study was to determine potential differences in lower extremity angular positioning and joint loading when performing a dance-style leap landing. Fifteen female dancers (age: 20 ± 1 years; height: 1.61 ± 0.13 m; weight: 58.00 ± 11.89 kg) completed six leap-landing trials during which three-dimensional kinematics and kinetics data were collected. Paired-samples t-tests (α = 0.05) and Cohen’s d effect sizes (ES; large ≥ 0.8) were used to compare the following variables: jump height; peak vertical ground reaction force; loading time; loading rate; joint angular positioning of the ankle, knee, hip, and trunk in the frontal and sagittal planes; and joint angular impulse of the ankle, knee, and hip in the frontal and sagittal planes between the dominant and non-dominant limbs. Frontal plane hip angular impulse was significantly greater in the dominant limb (p = 0.023, ES = 1.53). While no other statistically significant differences were observed between dominant and non-dominant limbs, moderate effect sizes were observed for the hip and trunk angles in the frontal plane along with hip impulse in the sagittal plane. This study indicates that dancers might slightly alter their landing strategy at the hip joint when leap-landing onto the dominant limb. Frontal plane hip mechanics should be considered to minimize overuse injury potential in the dominant limb.


2020 ◽  
Vol 29 (8) ◽  
pp. 1069-1074
Author(s):  
Aiko Sakurai ◽  
Kengo Harato ◽  
Yutaro Morishige ◽  
Shu Kobayashi ◽  
Yasuo Niki ◽  
...  

Context: Toe direction is an important factor affecting knee biomechanics during various movements. However, it is still unknown whether toe direction will affect trunk and pelvic movements. Objective: To examine and clarify the effects of toe directions on biomechanics of trunk and pelvis as well as lower-extremities during single-leg drop landing (SLDL). Design: Descriptive laboratory study. Setting: Research laboratory. Participants: A total of 27 male recreational-level athletes. Intervention(s): Subjects performed SLDL under 3 different toe directions, including 0° (toe neutral), 20° (toe-in [TI]), and −20° (toe-out). SLDL was captured using a motion analysis system. Nondominant leg (27 left) was chosen for the analysis. Main Outcome Measures: Peak values of kinematic and kinetic parameters during landing phase were assessed. In addition, those parameters at the timing of peak vertical ground reaction force were also assessed. The data were statistically compared among 3 different toe directions using 1-way repeated measures of analysis of variance or Friedman χ2 r test. Results: Peak knee abduction angle and moment in TI were significantly larger than in toe neutral and toe-out (P < .001). Moreover, peak greater anterior inclination, greater inclination, and rotation of trunk and pelvis toward the nonlanding side were seen in TI (P < .001). At the timing of peak vertical ground reaction force, trunk inclined to the landing side with larger knee abduction angle in TI (P < .001). Conclusions: Several previous studies suggested that larger knee abduction angle and moment on landing side as well as trunk and pelvic inclinations during landing tasks were correlated with knee ligament injury. However, it is still unknown concerning the relationship between toe direction and trunk/pelvis movements during landing tasks. From the present study, TI during SLDL would strongly affect biomechanics of trunk and pelvis as well as knee joint, compared with toe neutral and toe-out.


2018 ◽  
Vol 59 ◽  
pp. 110-116 ◽  
Author(s):  
Marina Cabral Waiteman ◽  
Ronaldo Valdir Briani ◽  
Marcella Ferraz Pazzinatto ◽  
Amanda Schenatto Ferreira ◽  
Deisi Ferrari ◽  
...  

2016 ◽  
Vol 41 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Agathe Nérot ◽  
Micah Nicholls

Background: Internal hip abduction moment is a major indicator for hip loading. A new hip bracing concept was designed to unload the cartilaginous area in hip osteoarthritis via an abduction and external rotation force intended to alter the weight bearing area and reduce compression through the joint. Objective: To assess the effect of a novel brace on hip rotation in the transverse and coronal planes and on the hip abduction moment. Study design: Repeated measures. Methods: Gait analysis was performed on 14 subjects with unilateral symptomatic hip osteoarthritis. Pain, joint motion, moments and vertical ground reaction force were compared between the braced and the unbraced (control), randomly assigned, conditions. Results: Nine participants felt an immediate reduction in pain while walking with the hip brace. Peak hip abduction moment significantly decreased on the osteoarthritis side ( p = 0.017). Peak hip adduction ( p = 0.004) and internal rotation ( p = 0.0007) angles significantly decreased at stance with the brace. Conclusion: Wearing the brace would appear to reduce the compressive joint reaction force at the femuroacetabular interface as indicated by a reduction in internal hip abduction moment along with immediate pain reduction in nine participants. Further long-term studies are warranted. Clinical relevance The brace rotates the hip in the transverse and coronal planes, possibly resulting in a decrease in load through the diseased area of cartilage. In some patients, an immediate decrease in pain was experienced. The brace offers an alternative solution for hip osteoarthritis patients not ready for a hip replacement.


2015 ◽  
Vol 64 (2) ◽  
pp. 76-81 ◽  
Author(s):  
GR Colborne ◽  
JE Routh ◽  
KR Weir ◽  
JE McKendry ◽  
E Busschers

2012 ◽  
Vol 21 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Derya Ozer Kaya ◽  
Irem Duzgun ◽  
Gul Baltaci ◽  
Selma Karacan ◽  
Filiz Colakoglu

Objective:To assess and compare the effects of 6 mo of Pilates and calisthenics on multijoint coordination and proprioception of the lower limbs at the 3rd and 6th mo of training.Design:Randomized, controlled, assessor-blinded, repeated-measures.Setting:University research laboratory.Participants and Intervention:Healthy, sedentary, female participants age 25–50 y were recruited and randomly divided into 3 groups: a calisthenic exercise group (n = 34, mean age ± SD 40 ± 8 y, body-mass index [BMI] 31.04 ± 4.83 kg/m2), a Pilates exercise group (n = 32, mean age ± SD 37 ± 8 y, BMI 31.04 ± 4.83 kg/m2), and a control group (n = 41, mean age ± SD 41 ± 7 y, BMI 27.09 ± 4.77 kg/m2). The calisthenics and Pilates groups underwent related training programs for 6 mo, while the controls had no specific training.Main Outcome Measures:Coordination and proprioception of the lower extremities with concentric and eccentric performances in the closed kinetic chain assessed with the monitored rehab functional squat system at baseline and at the 3rd and 6th mo of training.Results:For the within-group comparison, coordinative concentric and eccentric deviation values were significantly decreased for both dominant and nondominant lower limbs at pretraining and at the 3rd and 6th mo posttraining in the calisthenics group (P < .05). In contrast, there was no improvement in the Pilates group throughout the training. However, for comparisons between groups, the baseline values of coordinative concentric and eccentric deviations were different in the calisthenics group than in Pilates and the controls (P < .05). There were no differences in the proprioception values of either visible or nonvisible movement in any group throughout the training (P > .05).Conclusions:It seems that calisthenic exercises are more likely to improve coordination of the lower extremity after 3 and 6 mo of training than Pilates exercises. Calisthenic exercises may be useful for individuals who require improved coordination.


Sign in / Sign up

Export Citation Format

Share Document