Forces and Moments on the Knee During Kneeling and Squatting

2011 ◽  
Vol 27 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Jonisha P. Pollard ◽  
William L. Porter ◽  
Mark S. Redfern

Euler angle decomposition and inverse dynamics were used to determine the knee angles and net forces and moments applied to the tibia during kneeling and squatting with and without kneepads for 10 subjects in four postures: squatting (Squat), kneeling on the right knee (One Knee), bilateral kneeling near full flexion (Near Full) and bilateral kneeling near 90° flexion (Near 90). Kneepads affected the knee flexion (p= .002), medial forces (p= .035), and internal rotation moments (p= .006). Squat created loading conditions that had higher varus (p< .001) and resultant moments (p= .027) than kneeling. One Knee resulted in the highest force magnitudes and net moments (p< .001) of the kneeling postures. Thigh-calf and heel-gluteus contact forces decreased the flexion moment on average by 48% during Squat and Near Full.

2020 ◽  
Vol 36 (6) ◽  
pp. 444-456
Author(s):  
David C. Kingston ◽  
Stacey M. Acker

A musculoskeletal model of the right lower limb was developed to estimate 3D tibial contact forces in high knee flexion postures. This model determined the effect of intersegmental contact between thigh–calf and heel–gluteal structures on tibial contact forces. This model includes direct tracking and 3D orientation of intersegmental contact force, femoral translations from in vivo studies, wrapping of knee extensor musculature, and a novel optimization constraint for multielement muscle groups. Model verification consisted of calculating the error between estimated tibial compressive forces and direct measurements from the Grand Knee Challenge during movements to ∼120° of knee flexion as no high knee flexion data are available. Tibial compression estimates strongly fit implant data during walking (R2 = .83) and squatting (R2 = .93) with a root mean squared difference of .47 and .16 body weight, respectively. Incorporating intersegmental contact significantly reduced model estimates of peak tibial anterior–posterior shear and increased peak medial–lateral shear during the static phase of high knee flexion movements by an average of .33 and .07 body weight, respectively. This model supports prior work in that intersegmental contact is a critical parameter when estimating tibial contact forces in high knee flexion movements across a range of culturally and occupationally relevant postures.


2019 ◽  
Vol 54 (10) ◽  
pp. 1105-1114 ◽  
Author(s):  
Christopher A. DiCesare ◽  
Alicia Montalvo ◽  
Kim D. Barber Foss ◽  
Staci M. Thomas ◽  
Timothy E. Hewett ◽  
...  

Context Early sport specialization, or the participation in 1 sport year-round to the exclusion of all others, is a growing concern in youth athletics because of its possible association with musculoskeletal injury. The underlying injury risk may be the result of coordination differences that sport-specialized athletes have been speculated to exhibit relative to multisport athletes; however, little evidence exists to support or refute this notion. Objective To examine relative hip- and knee-joint angular-motion variability among adolescent sport-specialized and multisport female adolescent athletes to determine how sport specialization may affect coordination. Design Cohort study. Setting Research laboratory. Patients or Other Participants A total of 366 sport-specialized and 366 multisport adolescent female basketball, soccer, and volleyball players. Intervention(s) Drop–vertical-jump (DVJ) assessment. Main Outcome Measure(s) Average coupling-angle variability (CAV) for hip flexion and knee flexion, knee flexion and ankle flexion, hip flexion and knee abduction, knee flexion and knee abduction, knee flexion and knee internal rotation, and knee abduction and knee internal rotation. Results The sport-specialized group exhibited increased coupling variability in dominant-limb hip flexion and knee flexion (P = .015), knee flexion and knee abduction (P = .014), and knee flexion and knee internal rotation (P = .048) while landing during the DVJ, although they had small effect sizes (η2 = 0.010, 0.010, and 0.007, respectively). No differences were present between groups for any of the other CAV measures of the dominant limb, and no differences were found for any CAV measures of the nondominant limb (all P values &gt; .05). Conclusions Sport specialization was associated with increased variability of critical hip- and knee-joint couplings responsible for effective landing during the DVJ. Altered coordination strategies that involve the hip and knee joints may underlie unstable landings, inefficient force-absorption strategies, or greater contact forces that can place the lower extremities at risk for injury (or a combination of these).


2014 ◽  
Vol 30 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Pascal Schütz ◽  
Renate List ◽  
Roland Zemp ◽  
Florian Schellenberg ◽  
William R. Taylor ◽  
...  

The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject’s movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.


2006 ◽  
Vol 22 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Dali Xu ◽  
John W. Chow ◽  
Y. Tai Wang

This study examined lower extremity joint moments during walk and turn with different turn angles and pivot feet. Seven young adults (age 21 ± 1.3 yrs) were asked to walk at a self-selected speed (1.35 ± 0.15 m/s) and to turn to the right using right (spin turn) and left (step turn) pivot feet at turn angles of 0° (walking straight), 45°, and 90°. Video and forceplate systems were employed for kinematic and kinetic data collection. Inverse dynamics approach was used to compute joint moments using segmental kinematics, ground reaction forces, and moments. The participants decreased their forward speed by increasing the ankle plantar flexion moment as the turn angle increased. The peak ankle plantar flexion moment during the braking phase increased with increasing turn angle for both spin and step turns. Ankle invertor moments were observed only in spin turns, suggesting that more ankle muscles are involved in spin turns than in step turns. The turn angle had a significant effect on the transverse plane moment profiles at the different lower extremity joints. The results suggest that the loading patterns of different anatomical structures in the lower extremity are affected by both turn angle and pivot foot during walk and turn actions.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


1970 ◽  
Vol 1 (1) ◽  
pp. 78-82
Author(s):  
Paulo José Oliveira Cortez ◽  
José Elias Tomazini ◽  
Mauro Gonçalves

Introdução: A diminuição da capacidade de exercer esforços por parte dos músculos rotadores pode criar uma variedade de problemas. O conhecimento preciso do nível de força muscular de um indivíduo é importante, tanto para a avaliação da capacidade funcional ocupacional, como para uma apropriada prescrição de exercícios atléticos e de reabilitação. Percebe-se escassez de informação sobre as articulações do ombro, bem como os fatores envolvidos na força muscular dessa região. O objetivo deste estudo foi comparar a força gerada pelos músculos do manguito rotador entre o membro superior direito e o membro superior esquerdo em indivíduos saudáveis. Métodos: Participaram do estudo 22 sujeitos do sexo masculino, com idade de 18 e 19 anos, militares, saudáveis e sem história clínica de patologia ortopédica ou qualquer tipo de lesão no sistema musculoesquelético. Foram aplicados dois testes de força: Rotação Interna e Rotação Externa. Resultado : A força média de rotação interna no membro superior direito (MSD) foi maior que a força média de rotação interna no membro superior esquerdo (MSE) (p=0,723) e a força de rotação externa no MSD foi menor que a força média de rotação externa no MSE (p=0,788). Não houve diferença estatística na comparação dos valores de força de todos os testes de força isométrica. Conclusão: Para amostra estudada e metodologia utilizada na avaliação da força muscular, não houve diferença estatística na comparação da força gerada pelos músculos do manguito rotador do membro superior direito e do membro superior esquerdo.Rotator Cuff Muscle Strength in Healthy Individuals Introduction: Decreased ability to exert efforts by the rotator muscles can create a variety of problems. The precise knowledge of the level of muscular strength of an individual is important for both the functional capacity evaluation for occupational as an appropriate exercise prescription and rehabilitation of athletic. It is perceived scarcity of information on the shoulder joints as well as factors involved in muscle strength in this region. Objective: Develop a device for measuring the strength generated by the muscles of the upper limbs and the verification of efficiency and adaptability of this device through a comparative study of muscle strength in healthy subjects. Methods: The study included 22 male subjects, aged 18 and 19 years, military personnel, body mass between 57.7 and 93 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without a history of orthopaedic disease or any kind of damage to the musculoskeletal system. Three strength tests were applied: Internal Rotation and External Rotation. For each type of effort three maximum voluntary contractions were required for 10 seconds, with an interval of 30 seconds between each contraction.  Results: Internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0, 723) and the external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0,788).  No statistical difference in comparing the strength values of all isometric strength tests. Conclusion: For sample and methodology used to assess muscle strength, there was no statistical difference in comparing the force generated by the muscles of the rotator cuff of the right and left upper limb.


2007 ◽  
Vol 35 (9) ◽  
pp. 1521-1527 ◽  
Author(s):  
Benjamin R. Coobs ◽  
Robert F. LaPrade ◽  
Chad J. Griffith ◽  
Bradley J. Nelson

Background The fibular collateral ligament is the primary stabilizer to varus instability of the knee. Untreated fibular collateral ligament injuries can lead to residual knee instability and can increase the risk of concurrent cruciate ligament reconstruction graft failures. Anatomic reconstructions of the fibular collateral ligament have not been biomechanically validated. Purpose To describe an anatomic fibular collateral ligament reconstruction using an autogenous semitendinosus graft and to test the hypothesis that using this reconstruction technique to treat an isolated fibular collateral ligament injury will restore the knee to near normal stability. Study Design Controlled laboratory study. Methods Ten nonpaired, fresh-frozen cadaveric knees were biomechanically subjected to a 10 N·m varus moment and 5 N·m external and internal rotation torques at 0°, 15°, 30°, 60°, and 90° of knee flexion. Testing was performed with an intact and sectioned fibular collateral ligament, and also after an anatomic reconstruction of the fibular collateral ligament with an autogenous semitendinosus graft. Motion changes were assessed with a 6 degree of freedom electromagnetic motion analysis system. Results After sectioning, we found significant increases in varus rotation at 0°, 15°, 30°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0°, 15°, 30°, 60°, and 90° of knee flexion. After reconstruction, there were significant decreases in motion in varus rotation at 0°, 15°, 30°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0°, 15°, and 30° of knee flexion. In addition, we observed a full recovery of knee stability in varus rotation at 0°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0° and 30° of knee flexion. Conclusion An anatomic fibular collateral ligament reconstruction restores varus, external, and internal rotation to near normal stability in a knee with an isolated fibular collateral ligament injury. Clinical Significance An anatomic reconstruction of the fibular collateral ligament with an autogenous semitendinosus graft is a viable option to treat nonrepairable acute or chronic fibular collateral ligament tears in patients with varus instability.


Author(s):  
Young Dong Song ◽  
Shinichiro Nakamura ◽  
Shinichi Kuriyama ◽  
Kohei Nishitani ◽  
Hiromu Ito ◽  
...  

AbstractSeveral concepts may be used to restore normal knee kinematics after total knee arthroplasty. One is a kinematically aligned (KA) technique, which restores the native joint line and limb alignment, and the other is the use of a medial pivot knee (MPK) design, with a ball and socket joint in the medial compartment. This study aimed to compare motions, contact forces, and contact stress between mechanically aligned (MA) and KA (medial tilt 3° [KA3] and 5° [KA5]) models in MPK. An MPK design was virtually implanted with MA, KA3, and KA5 in a validated musculoskeletal computer model of a healthy knee, and the simulation of motion and contact forces was implemented. Anteroposterior (AP) positions, mediolateral positions, external rotation angles of the femoral component relative to the tibial insert, and tibiofemoral contact forces were evaluated at different knee flexion angles. Contact stresses on the tibial insert were calculated using finite element analysis. The AP position at the medial compartment was consistent for all models. From 0° to 120°, the femoral component in KA models showed larger posterior movement at the lateral compartment (0.3, 6.8, and 17.7 mm in MA, KA3, and KA5 models, respectively) and larger external rotation (4.2°, 12.0°, and 16.8° in the MA, KA3, and KA5 models, respectively) relative to the tibial component. Concerning the mediolateral position of the femoral component, the KA5 model was positioned more medially. The contact forces at the lateral compartment of all models were larger than those at the medial compartment at >60° of knee flexion. The peak contact stresses on the tibiofemoral joint at 90° and 120° of knee flexion were higher in the KA models. However, the peak contact stresses of the KA models at every flexion angle were <20 MPa. The KA technique in MPK can successfully achieve near-normal knee kinematics; however, there may be a concern for higher contact stresses on the tibial insert.


2021 ◽  
Author(s):  
Martin Huber ◽  
Matthew Eschbach ◽  
Kazem Kazerounian ◽  
Horea T. Ilies

Abstract Knee osteoarthritis (OA) is a disease that compromises the cartilage inside the knee joint, resulting in pain and impaired mobility. Bracing is a common treatment, however currently prescribed braces cannot treat bicompartmental knee OA, fail to consider the muscle weakness that typically accompanies the disease, and utilize hinges that restrict the knee's natural biomechanics. We have developed and evaluated a brace which addresses these shortcomings. This process has respected three principal design goals: reducing the load experienced across the entire knee joint, generating a supportive moment to aid the muscles in shock absorption, and interfering minimally with gait kinematics. Load reduction is achieved via the compression of medial and lateral leaf springs, and magnetorheological dampers provide the supportive moment during knee loading. A novel, personalized joint mechanism replaces a traditional hinge to reduce interference with knee kinematics. Using motion capture gait analysis, we evaluated the basic functionality of a prototype device. We calculated, via inverse dynamics analysis, the reaction forces at the knee joint and the moments generated by the leg muscles during gait. Comparing these values between braced and unbraced trials allowed us to evaluate the system's effectiveness. Kinematic measurements showed the extent to which the brace interfered with natural gait characteristics. Of the three design goals: a reduction in knee contact forces was demonstrated; increased shock absorption was observed, but not to statistical significance; and natural gait was largely preserved. The techniques presented in this paper could lead to improved OA treatment through patient-specific braces.


Author(s):  
Allison L. Kinney ◽  
Heather K. Vincent ◽  
Melinda K. Harman ◽  
James Coburn ◽  
Darryl D. D’Lima ◽  
...  

Obesity is commonly considered a risk factor for the development of knee osteoarthritis [1]. Previous studies have shown that reductions in body weight correspond to reductions in total knee joint compressive forces (as calculated by inverse dynamics) [2–4]. A recent study showed that external knee load measurements are not strong predictors of internal knee contact forces [5]. Therefore, direct measurement of knee contact force is important for understanding how body weight changes impact knee joint loading. Force-measuring knee implants can directly measure internal knee contact forces [6].


Sign in / Sign up

Export Citation Format

Share Document