Joint Angles of the Ankle, Knee, and Hip and Loading Conditions During Split Squats

2014 ◽  
Vol 30 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Pascal Schütz ◽  
Renate List ◽  
Roland Zemp ◽  
Florian Schellenberg ◽  
William R. Taylor ◽  
...  

The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject’s movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

Author(s):  
Asif Arefeen ◽  
Yujiang Xiang

Abstract A novel multibody dynamics modeling method is proposed for two-dimensional (2D) team lifting prediction. The box itself is modeled as a floating-base rigid body in Denavit-Hartenberg representation. The interactions between humans and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. An inverse-dynamics-based optimization method is used to simulate the team lifting motion where the dynamic effort of two humans is minimized subjected to physical and task-based constraints. The design variables are control points of cubic B-splines of joint angle profiles of two humans and the box, and the grasping forces between humans and the box. Two numerical examples are successfully simulated with different box weights (20 Kg and 30 Kg, respectively). The humans’ joint angle, torque, ground reaction force, and grasping force profiles are reported. The joint angle profiles are validated with the experimental data.


Author(s):  
David Kingston

The bodyweight squat is routinely used for conditioning of the knee musculature. In the performance of this exercise, modifications in the initial standing position may result in altered frontal plane kneel loading, and hence may potentially be used for targeted exercise prescription. The purpose of this study is to quantify the frontal plane mechanical loading on the knee joint whilst performing the bodyweight squat exercise, and to examine the effects of varying stance width and foot rotation angle. Twenty-four participants (14 males) performed 4 randomized sets of 8 repetitions of the body weight resistant squat exercise in the following conditions: 1) Shoulder width (SW) stance with parallel feet; 2) SW stance with feet externally rotated 30°; 3) 140% SW stance with parallel feet, and; 4) 140% SW stance with the feet externally rotated by 30°. The adduction/abduction knee joint moment experienced across conditions was calculated using inverse dynamics procedures. Moment waveforms were subjected to Principal Component (PC) analysis, with 3 PC’s retained based on a 90% trace criteria. Following, a 1-way repeated measures ANOVA and pair wise comparisons were used to discern differences between conditions. Omnibus test results indicate significant differences across conditions for PC1 and PC2 (p<0.01), Post hoc comparisons and waveform interpretation of PC1 extreme scores showed that the magnitude of the adduction moment was higher throughout the movement in the foot rotated conditions vs. the parallel feet conditions in both stance widths (mean Z scores .69 & .65 vs. -.88 & -.45, p<0.01, respectively). For PC2, significant differences were found between the 2 parallel feet conditions and the 2 foot rotated conditions, as well as between the foot conditions in the wide stance squats. PC2 differences were interpreted as phase shift operators. We found that modification of foot rotation slightly alters the magnitude and timing of knee adduction moment component during performance of the body weight squat. The observed magnitude differences are presumably a consequence of alteration in the location of the point of application of the ground reaction force during the initial standing posture. The findings may assist clinicians in exercise prescription decision making.


2011 ◽  
Vol 27 (3) ◽  
pp. 233-241 ◽  
Author(s):  
Jonisha P. Pollard ◽  
William L. Porter ◽  
Mark S. Redfern

Euler angle decomposition and inverse dynamics were used to determine the knee angles and net forces and moments applied to the tibia during kneeling and squatting with and without kneepads for 10 subjects in four postures: squatting (Squat), kneeling on the right knee (One Knee), bilateral kneeling near full flexion (Near Full) and bilateral kneeling near 90° flexion (Near 90). Kneepads affected the knee flexion (p= .002), medial forces (p= .035), and internal rotation moments (p= .006). Squat created loading conditions that had higher varus (p< .001) and resultant moments (p= .027) than kneeling. One Knee resulted in the highest force magnitudes and net moments (p< .001) of the kneeling postures. Thigh-calf and heel-gluteus contact forces decreased the flexion moment on average by 48% during Squat and Near Full.


Author(s):  
Ruta Jakušonoka ◽  
Zane Pavāre ◽  
Andris Jumtiņš ◽  
Aleksejs Smolovs ◽  
Tatjana Anaņjeva

Abstract Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years), 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05). The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.


2019 ◽  
Vol 14 (5) ◽  
pp. 583-589 ◽  
Author(s):  
Jason D. Stone ◽  
Adam C. King ◽  
Shiho Goto ◽  
John D. Mata ◽  
Joseph Hannon ◽  
...  

Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS −21.6% [3.9%]; CS −12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10975
Author(s):  
Nicos Haralabidis ◽  
Gil Serrancolí ◽  
Steffi Colyer ◽  
Ian Bezodis ◽  
Aki Salo ◽  
...  

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.


2019 ◽  
Vol 27 (4) ◽  
pp. 807-819
Author(s):  
赵裕明 ZHAO Yu-ming ◽  
金振林 JIN Zhen-lin

1986 ◽  
Vol 2 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Edward C. Frederick ◽  
John L. Hagy

Nine subjects (6 males, 3 females) ranging in body mass from 90.9 to 45.5 kg ran repeated trials across a force platform while being filmed at 50 fps. The subjects ran five barefooted trials at each of three speeds: 3.35, 3.83, and 4.47 m · s−1. Force data were collected on-line and analyzed for the magnitude and temporal characteristics of the initial impact (Fz1) peak and the active (Fz2) peak of vertical ground reaction force (VGRF). Multiple regression and correlation analysis were used to study the relationship between the magnitudes of these kinetic data and kinematic and anthropometric data taken from the film and from measurements of the subjects. The results support the general conclusion that speed and, indirectly, body mass are significant effectors of the magnitudes of Fz1. In addition, other factors that correlate significantly with Fz1 are reciprocal ponderal index (RPI) and stature; half-stride length, step length, leg length, and vertical hip excursion during a half-stride cycle; and hip offset, contact angle, and dorsiflexion angle at contact. Body mass correlates highly with Fz2 (r = 0.95). Other significant factors correlating with Fz2 are RPI, stature, vertical hip excursion, dorsiflexion angle, hip offset, half-stride length, and step length. These data support earlier findings that speed and the effective mass of the leg at contact are important effectors of the magnitude of Fzl. In addition, the kinematic and anthropometric parameters that contribute significantly to the variability in Fzl and F are generally cross-correlated with body size and/or running speed.


Author(s):  
Seyed Fakoorian ◽  
Vahid Azimi ◽  
Mahmoud Moosavi ◽  
Hanz Richter ◽  
Dan Simon

A method to estimate ground reaction forces (GRFs) in a robot/prosthesis system is presented. The system includes a robot that emulates human hip and thigh motion, along with a powered (active) transfemoral prosthetic leg. We design a continuous-time extended Kalman filter (EKF) and a continuous-time unscented Kalman filter (UKF) to estimate not only the states of the robot/prosthesis system but also the GRFs that act on the foot. It is proven using stochastic Lyapunov functions that the estimation error of the EKF is exponentially bounded if the initial estimation errors and the disturbances are sufficiently small. The performance of the estimators in normal walk, fast walk, and slow walk is studied, when we use four sensors (hip displacement, thigh, knee, and ankle angles), three sensors (thigh, knee, and ankle angles), and two sensors (knee and ankle angles). Simulation results show that when using four sensors, the average root-mean-square (RMS) estimation error of the EKF is 0.0020 rad for the joint angles and 11.85 N for the GRFs. The respective numbers for the UKF are 0.0016 rad and 7.98 N, which are 20% and 33% lower than those of the EKF.


Sign in / Sign up

Export Citation Format

Share Document