The Effects of an Associative, Dissociative, Internal, and External Focus of Attention on Running Economy

Author(s):  
Mahin Aghdaei ◽  
Alireza Farsi ◽  
Maryam Khalaji ◽  
Jared Porter

Much research has been executed to investigate how altering focus of attention impacts performance and feelings of fatigue. Using a within-participant design, the present study examined how an associative and dissociative attentional in addition to an internal and external attentional dimension influenced the running economy of nonprofessional runners. Twelve women (aged 18–30 years old) ran on a treadmill at 70% of their predetermined maximum velocity. Participants ran in four counterbalanced conditions (dissociative-external, dissociative-internal, associative-external, and associative-internal). Average oxygen volume, respiration volume and breathing frequency, heart rate, blood lactate level, and Borg rating of perceived exertion were measured. Our findings revealed when participants adopted a dissociative-external focus of attention, they consumed less oxygen, had lower blood lactate, and a lower rating of perceived exertion compared with trials completed using an associative attention strategy. The findings of this study demonstrate that running economy is improved and feelings of fatigue are lowest when using a combination of a dissociative-external focus of attention.

2017 ◽  
Vol 02 (01) ◽  
pp. E1-E8 ◽  
Author(s):  
Matthew Batliner ◽  
Shalaya Kipp ◽  
Alena Grabowski ◽  
Rodger Kram ◽  
William Byrnes

AbstractRunning economy (oxygen uptake or metabolic rate for running at a submaximal speed) is one of the key determinants of distance running performance. Previous studies reported linear relationships between oxygen uptake or metabolic rate and speed, and an invariant cost of transport across speed. We quantified oxygen uptake, metabolic rate, and cost of transport in 10 average and 10 sub-elite runners. We increased treadmill speed by 0.45 m·s−1 from 1.78 m·s−1 (day 1) and 2.01 m·s−1 (day 2) during each subsequent 4-min stage until reaching a speed that elicited a rating of perceived exertion of 15. Average runners’ oxygen uptake and metabolic rate vs. speed relationships were best described by linear fits. In contrast, the sub-elite runners’ relationships were best described by increasing curvilinear fits. For the sub-elites, oxygen cost of transport and energy cost of transport increased by 12.8% and 9.6%, respectively, from 3.58 to 5.14 m·s−1. Our results indicate that it is not possible to accurately predict metabolic rates at race pace for sub-elite competitive runners from data collected at moderate submaximal running speeds (2.68–3.58 m·s−1). To do so, metabolic rate should be measured at speeds that approach competitive race pace and curvilinear fits should be used for extrapolation to race pace.


Author(s):  
Thomas Losnegard ◽  
Sondre Skarli ◽  
Joar Hansen ◽  
Stian Roterud ◽  
Ida S. Svendsen ◽  
...  

Purpose: Rating of perceived exertion (RPE) is a widely used tool to assess subjective perception of effort during exercise. The authors investigated between-subject variation and effect of exercise mode and sex on Borg RPE (6–20) in relation to heart rate (HR), oxygen uptake (VO2), and capillary blood lactate concentrations. Methods: A total of 160 elite endurance athletes performed a submaximal and maximal test protocol either during cycling (n = 84, 37 women) or running (n = 76, 32 women). The submaximal test consisted of 4 to 7 progressive 5-minute steps within ∼50% to 85% of maximal VO2. For each step, steady-state HR, VO2, and capillary blood lactate concentrations were assessed and RPE reported. An incremental protocol to exhaustion was used to determine maximal VO2 and peak HR to provide relative (%) HR and VO2 values at submaximal work rates. Results: A strong relationship was found between RPE and %HR, %VO2, and capillary blood lactate concentrations (r = .80–.82, all Ps < .05). The between-subject coefficient of variation (SD/mean) for %HR and %VO2 decreased linearly with increased RPE, from ∼10% to 15% at RPE 8 to ∼5% at RPE 17. Compared with cycling, running induced a systematically higher %HR and %VO2 (∼2% and 5%, respectively, P < .05) with these differences being greater at lower intensities (RPE < 13). At the same RPE, women showed a trivial, but significantly higher %HR and %VO2 than men (<1%, P < .05). Conclusions: Among elite endurance athletes, exercise mode influenced RPE at a given %HR and %VO2, with greater differences at lower exercise intensities. Athletes should manage different tools to evaluate training based on intensity and duration of workouts.


2009 ◽  
Vol 4 (4) ◽  
pp. 485-493 ◽  
Author(s):  
Craig A. Bridge ◽  
Michelle A. Jones ◽  
Barry Drust

Purpose:To investigate the physiological responses and perceived exertion during international Taekwondo competition.Methods:Eight male Taekwondo black belts (mean ± SD, age 22 ± 4 y, body mass 69.4 ± 13.4 kg, height 1.82 ± 0.10 m, competition experience 9 ± 5 y) took part in an international-level Taekwondo competition. Each combat included three 2-min rounds with 30 s of recovery between each round. Heart rate (HR) was recorded at 5-s intervals during each combat. Capillary blood lactate samples were taken from the fingertip 1 min before competition, directly after each round and 1 min after competition. Competitors’ rating of perceived exertion (RPE) was recorded for each round using Borg’s 6-to-20 scale.Results:HR (round 1: 175 ± 15 to round 3: 187 ± 8 beats·min−1; P < .05), percentage of HR maximum (round 1: 89 ± 8 to round 3: 96 ± 5% HRmax; P < .05), blood lactate (round 1: 7.5 ± 1.6 to round 3: 11.9 ± 2.1 mmol·L-1; P < .05) and RPE (round 1: 11 ± 2 to round 3: 14 ± 2; P < .05; mean ± SD) increased significantly across rounds.Conclusions:International-level Taekwondo competition elicited near-maximal cardiovascular responses, high blood lactate concentrations, and increases in competitors' RPE across combat. Training should therefore include exercise bouts that sufficiently stimulate both aerobic and anaerobic metabolism.


2016 ◽  
Vol 30 (5) ◽  
pp. 1373-1378 ◽  
Author(s):  
Jan Hoff ◽  
Øyvind Støren ◽  
Arnstein Finstad ◽  
Eivind Wang ◽  
Jan Helgerud

Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


Retos ◽  
2021 ◽  
Vol 44 ◽  
pp. 357-363
Author(s):  
Arkaitz Castañeda-Babarro ◽  
Borja Gutiérrez Santamaría ◽  
Aitor Coca ◽  
Julio Calleja-González ◽  
Ruth Cayero

Tug of war (TOW) involves 2 teams of eight people, pulling against each other on a rope. The main goal of TOW is to pull the opposing team towards a centre line over a distance of 4 m. The measurement of physiological parameters is key to understanding the demands of an activity and to identifying its limiting performance factors. The main aim of this study was to evaluate the intensity and effort demands of TOW pullers during competition, as follows: Data were collected from 7 male pullers (Height: 175.14±4.85; Body Mass: 77.39±3.92; Age: 39.86±11.68; %Fat: 17.56±5.21; VO2max: 44.24±8.38) in the 560 kg category. The blood lactate concentrations (LAC) were assessed before and at the end of each pull, and the global rating of perceived exertion (RPE) at the end of the pulls. The following week, pullers performed a graded exercise test (GXT). Heart rate, LAC and RPE were assessed before, during and at the end of the GXT to calculate the individual anaerobic threshold. The mean blood lactate concentrations recorded at the end of the pulls (6±1.9 mmol/l) were 32% higher than the mean values recorded for the individual anaerobic threshold intensity (4.1±0.5 mmol/l). For their part, the mean RPE values of athletes after the pulls (6±1.5 mmol/l) were 21% lower than those obtained for intensity of the individual anaerobic threshold (7.6±0.8 mmol/l). The intensity and effort response are greater and kept above the anaerobic threshold during the competition in TOW pullers. Resumen. Tug of war (TOW) involucra a 2 equipos de ocho personas, tirando una contra la otra con una cuerda. El objetivo principal es llevar al equipo contrario hacia una línea central a una distancia de 4 m. La medición de parámetros fisiológicos es clave para comprender las demandas de una actividad y para identificar sus factores limitantes de rendimiento. El objetivo principal de este estudio fue evaluar la intensidad y las demandas de esfuerzo de los tiradores de TOW durante la competición. 7 tiradores masculinos (altura: 175,14 ± 4,85; masa corporal: 77,39 ± 3,92; edad: 39,86 ± 11,68; % de grasa: 17,56 ± 5,21; VO2max: 44,24 ± 8,38) en la categoría de 560 kg. Se evaluaron concentraciones de lactato (LAC) antes y después de cada tirada, y el esfuerzo percibido (RPE) al final. La siguiente semana, los tiradores realizaron una prueba de esfuerzo (GXT). La FC, LAC y RPE se evaluaron antes, durante y después del GXT para calcular el umbral anaeróbico individual. Las concentraciones de LAC registradas medios registrados para la intensidad del umbral anaeróbico individual (VT2) (4,1 ± 0,5 mmol/l). Los valores medios de RPE de los deportistas en competición (6 ± 1,5 mmol/l) fueron un 21% inferiores a los obtenidos para la intensidad del VT2 (7,6 ± 0,8 mmol/l). La intensidad y la respuesta al esfuerzo son mayores y se mantienen por encima del VT2 durante la competición en tiradores TOW al final de los tirones (6 ± 1,9 mmol/l) fueron un 32% más altas que los valores.


Sign in / Sign up

Export Citation Format

Share Document