Hip- and Thigh-Muscle Activation During the Star Excursion Balance Test

2011 ◽  
Vol 20 (4) ◽  
pp. 428-441 ◽  
Author(s):  
Beth Norris ◽  
Elaine Trudelle-Jackson

Context:The Star Excursion Balance Test (SEBT) is often used to train and assess dynamic balance and neuromuscular control. Few studies have examined hip- and thigh-muscle activation during the SEBT.Objective:To quantify hip- and thigh-muscle activity during the SEBT.Design:Repeated measures.Setting:Laboratory.Participants:22 healthy individuals, 11 men and 11 women.Methods:EMG measurements were taken as participants completed 3 trials of the anterior (A), medial (M), and posteromedial (PM) reach directions of the SEBT.Main Outcome Measures:Mean EMG data (% maximal voluntary isometric contraction) from the gluteus medius (Gmed), gluteus maximus (Gmax), and vastus medialis (VM) were measured during the eccentric phase of each SEBT reach direction. Test–retest reliability of EMG data across the 3 trials in each direction was calculated. EMG data from each muscle were compared across the 3 reach directions.Results:Test–retest reliability ranged from ICC3,1 values of .91 to .99. A 2-way repeated-measure ANOVA revealed a significant interaction between muscle activation and reach direction. One-way ANOVAs showed no difference in GMed activity between the A and M directions. GMed activity in the A and M directions was greater than in the PM direction. There was no difference in GMax and VM activity across the 3 directions.Conclusion:GMed was recruited most effectively when reaching was performed in the A and M directions. The A, M, and PM directions elicited similar patterns of muscle recruitment for the GMax and VM. During all 3 SEBT directions, VM activation exceeded the 40–60% threshold suggested for strengthening effects. GMed activity also exceeded the threshold in the M direction. GMax activation, however, was below the 40% threshold for all 3 reach directions, suggesting that performing dynamic lower extremity reaching in the A, M, and PM directions may not elicit strengthening effects for the GMax.

2014 ◽  
Vol 42 (4) ◽  
pp. 120-124 ◽  
Author(s):  
Joaquin Calatayud ◽  
Sebastien Borreani ◽  
Juan Carlos Colado ◽  
Fernando Martin ◽  
Jorge Flandez

2000 ◽  
Vol 9 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Michael D. Ross ◽  
Elizabeth G. Fontenot

Context:The standing heel-rise test has been recommended as a means of assessing calf-muscle performance. To the authors' knowledge, the reliability of the test using intraclass correlation coefficients (ICCs) has not been reported.Objective:To determine the test-retest reliability of the standing heel-rise test.Design:Single-group repeated measures.Participants:Seventeen healthy subjects.Settings and Infevention:Each subject was asked to perform as many standing heel raises as possible during 2 testing sessions separated by 7 days.Main Outcome Measures:Reliability data for the standing heel-rise test were studied through a repeated-measures analysis of variance, ICC2, 1 and SEMs.Results:The ICC2,1 and SEM values for the standing heel-rise test were .96 and 2.07 repetitions, respectively.Conclusions:The standing heel-rise test offers clinicians a reliable assessment of calfmuscle performance. Further study is necessary to determine the ability of the standing heel-rise test to detect functional deficiencies in patients recovering from lower leg injury or surgery


Author(s):  
Kyung-Min Kim ◽  
María D. Estudillo-Martínez ◽  
Yolanda Castellote-Caballero ◽  
Alejandro Estepa-Gallego ◽  
David Cruz-Díaz

Chronic Ankle Instability (CAI) is one of the most common musculoskeletal dysfunctions. Stroboscopic vision (SV) training has been deemed to enhance somatosensorial pathways in this population group; nevertheless, until recently no studies have addressed the additional effects of this treatment option to the traditional therapeutic approach. Methods: To evaluate the effectiveness of a partial visual deprivation training protocol in patients with CAI, a randomized controlled trial was carried out. Patients with CAI (n = 73) were randomized into either a balance training, SV training, or a control (no training) group. For participants assigned into training groups, they received 18 training sessions over 6 weeks. The primary outcome was dynamic balance as measured by the Star Excursion Balance Test assessed at baseline and after 6 weeks of intervention. Secondary outcome measures included ankle dorsiflexion range of motion, self-reported instability feeling, and ankle functional status. Results: Better scores in stroboscopic training and balance training groups in all outcome measures were observed in comparison with the control group with moderate to large effect sizes. Stroboscopic training was more effective than neuromuscular training in self-reported instability feeling (cohen’s d = 0.71; p = 0.042) and anterior reach distance of the star excursion balance test (cohen’s d = 1.23; p = 0.001). Conclusions: Preliminary findings from the effects of SV Stroboscopic training in patients with CAI, suggest that SV may be beneficial in CAI rehabilitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanzhi Bi ◽  
Xin Hou ◽  
Jiahui Zhong ◽  
Li Hu

AbstractPain perception is a subjective experience and highly variable across time. Brain responses evoked by nociceptive stimuli are highly associated with pain perception and also showed considerable variability. To date, the test–retest reliability of laser-evoked pain perception and its associated brain responses across sessions remain unclear. Here, an experiment with a within-subject repeated-measures design was performed in 22 healthy volunteers. Radiant-heat laser stimuli were delivered on subjects’ left-hand dorsum in two sessions separated by 1–5 days. We observed that laser-evoked pain perception was significantly declined across sessions, coupled with decreased brain responses in the bilateral primary somatosensory cortex (S1), right primary motor cortex, supplementary motor area, and middle cingulate cortex. Intraclass correlation coefficients between the two sessions showed “fair” to “moderate” test–retest reliability for pain perception and brain responses. Additionally, we observed lower resting-state brain activity in the right S1 and lower resting-state functional connectivity between right S1 and dorsolateral prefrontal cortex in the second session than the first session. Altogether, being possibly influenced by changes of baseline mental state, laser-evoked pain perception and brain responses showed considerable across-session variability. This phenomenon should be considered when designing experiments for laboratory studies and evaluating pain abnormalities in clinical practice.


2012 ◽  
Vol 47 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Hayley Ericksen ◽  
Phillip A. Gribble

Context: Hormonal fluctuation as a risk factor in anterior cruciate ligament injury has been investigated with conflicting results. However, the influence of hormone fluctuations on ankle laxity and function has not been thoroughly examined. Objective: To examine the potential hormone contributions to ankle laxity and dynamic postural control during the preovulatory and postovulatory phases of the menstrual cycle using an ankle arthrometer and the Star Excursion Balance Test in healthy women. The cohort group consisted of male control participants. Design: Cohort study. Setting: Research laboratory. Patients or Other Participants: Twenty healthy women (age = 23.8 ± 6.50 years, height = 163.88 ± 8.28 cm, mass = 63.08 ± 12.38 kg) and 20 healthy men (age = 23.90 ± 4.15 years, height = 177.07 ± 7.60 cm, mass = 80.57 ± 12.20 kg). Intervention(s): Ankle stability was assessed with anterior-posterior and inversion-eversion loading. Dynamic postural control was assessed with the posteromedial reaching distance of the Star Excursion Balance Test. Main Outcome Measure(s): Female participants used ovulation kits for 3 months to determine the time of ovulation; during their preovulatory and postovulatory phases, they were tested in the laboratory with an ankle arthrometer and the Star Excursion Balance Test. Male participants were tested on similar dates as controls. For each dependent variable, a time by side by sex repeated-measures analysis of variance was performed. Statistical significance was set a priori at P < .05. Results: For anterior-posterior laxity, a side main effect was noted (F1,38 = 10.93, P = .002). For inversion-eversion laxity, a sex main effect was seen (F1,38 = 10.75, P = .002). For the posteromedial reaching task, a sex main effect was demonstrated (F1,38 = 8.72, P = .005). No influences of time on the dependent variables were evident. Conclusions: Although women presented with more ankle inversion-eversion laxity and less dynamic postural control, hormonal fluctuations during the menstrual cycle (preovulatory compared with postovulatory) did not affect ankle laxity or dynamic postural control, 2 factors that are associated with ankle instability.


2021 ◽  
pp. 1-9
Author(s):  
Adam J. Wells ◽  
Bri-ana D.I. Johnson

Context: The Dynavision D2™ Mode A test (ModeA) is a 1-minute reaction time (RT) test commonly used in sports science research and clinical rehabilitation. However, there is limited data regarding the effect of repeated testing (ie, training) or subsequent periods of no testing (ie, detraining) on test–retest reliability and RT performance. Therefore, the purpose of this study was to examine the test–retest reliability, training, and detraining effects associated with the D2™ ModeA test. Design: Repeated measures/reliability. Methods: Twenty-four recreationally active men and women completed 15 training sessions consisting of 2 ModeA tests per session (30 tests). The participants were then randomized to either 1 or 2 weeks of detraining prior to completing 15 retraining sessions (30 tests). The training and retraining periods were separated into 10 blocks for analysis (3 tests per block). The number of hits (hits) and the average RT per hit (AvgRT) within each block were used to determine RT performance. Intraclass correlation coefficients, SEM, and minimum difference were used to determine reliability. Repeated-measures analysis of variance/analysis of covariance were used to determine training and detraining effects, respectively. Results: The ModeA variables demonstrated excellent test–retest reliability (intraclass correlation coefficient2,3 > .93). Significant improvements in hits and AvgRT were noted within training blocks 1 to 5 (P < .05). No further improvements in RT performance were noted between training blocks 6 through 10. There was no effect of detraining period on RT. The RT performance was not different between blocks during retraining. Conclusions: It appears that 15 tests are necessary to overcome the training effect and establish reliable baseline performance for the ModeA test. Detraining for 1 to 2 weeks did not impact RT performance. The authors recommend that investigators and clinicians utilize the average of 3 tests when assessing RT performance using the D2 ModeA test.


2005 ◽  
Vol 42 (4) ◽  
pp. 423-433 ◽  
Author(s):  
Tim Bressmann

Objective To compare nasalance scores obtained with the Nasometer, the NasalView, and the OroNasal System; evaluate test-retest reliability of the three systems; and explore whether three common text passages used for nasalance analysis could be shortened to a sentence each. Subjects Seventy-six adults with normal speech and hearing (mean age 26.5 years). Procedures Subjects read the complete Zoo Passage, Rainbow Passage, and Nasal Sentences. Main Outcome Measures Mean nasalance magnitudes and mean nasalance distances were obtained with the three devices. Results The Nasometer had the lowest nasalance scores for the nonnasal Zoo Passage. The NasalView had the highest nasalance scores for the phonetically balanced Rainbow Passage. The OroNasal System had the lowest nasalance scores for the Nasal Sentences. The nasalance distance was largest for the Nasometer and smallest for the OroNasal System. Over 90% of the recordings were within 4% to 6% nasalance for most materials recorded with the Nasometer and the NasalView and within 7% to 9% for materials recorded with the OroNasal System. There were significant differences between the complete Zoo Passage and the Nasal Sentences and the individual sentences from these passages for the Nasometer and the OroNasal System. Conclusions The three systems measure nasalance in different ways and provide nasalance scores that are not interchangeable. Test-retest variability for the Nasometer and the NasalView may be higher than previously reported. Individual sentences from the Zoo Passage and the Nasal Sentences do not provide nasalance scores that are equivalent to the complete passages.


Author(s):  
Hannah Keppler ◽  
Sofie Degeest ◽  
Bart Vinck

Purpose The objective of the current study was to investigate the short-term test–retest reliability of contralateral suppression (CS) of click-evoked otoacoustic emissions (CEOAEs) using commercially available otoacoustic emission equipment. Method Twenty-three young normal-hearing subjects were tested. An otoscopic evaluation, admittance measures, pure-tone audiometry, measurements of CEOAEs without and with contralateral acoustic stimulation (CAS) to determine CS were performed at baseline ( n = 23), an immediate retest without and with refitting of the probe (only CS of CEOAEs; n = 11), and a retest after 1 week ( n = 23) were performed. Test–retest reliability parameters were determined on CEOAE response amplitudes without and with CAS, and on raw and normalized CS indices between baseline and the other test moments. Results Repeated-measures analysis of variance indicated no random or systematic changes in CEOAE response amplitudes without and with CAS, and in raw and normalized CS indices between the test moments. Moderate-to-high intraclass correlation coefficients with mostly high significant between-subjects variability between baseline and each consecutive test moment were found for CEOAE response amplitude without and with CAS, and for the raw and normalized CS indices. Other reliability parameters deteriorated between CEOAE response amplitudes with CAS as compared to without CAS, between baseline and retest with probe refitting, and after 1 week, as well as for frequency-specific raw and normalized CS indices as compared to global CS indices. Conclusions There was considerable variability in raw and normalized CS indices as measured using CEOAEs with CAS using commercially available otoacoustic emission equipment. More research is needed to optimize the measurement of CS of CEOAEs and to reduce influencing factors, as well as to make generalization of test–retest reliability data possible.


Sign in / Sign up

Export Citation Format

Share Document