Is the Combination of COL1A1 Gene Polymorphisms a Marker of Injury Risk?

2017 ◽  
Vol 26 (3) ◽  
pp. 234-238 ◽  
Author(s):  
Marta Stepien-Slodkowska ◽  
Krzysztof Ficek ◽  
Pawel Zietek ◽  
Mariusz Kaczmarczyk ◽  
Wioletta Lubkowska ◽  
...  

Context:The most commonly injured body part for skiing has been found to be the knee. The rupture of the anterior cruciate ligament (ACL) was the most frequent diagnosis. ACL ruptures are determined by several extrinsic and intrinsic risk factors including those that are hormonal, neuromuscular, anatomical, or genetic.Objectives:To examine the association of both COL1A1 rs1800012 (+1245G/T) and COL1A1 rs1107946 (–1997G/T) polymorphisms, individually and as haplotypes, with ACL ruptures in recreational Polish skiers.Design:Genomic DNA was extracted from buccal cells donated by the subjects, and genotyping was carried out using real-time polymerase chain reaction.Settings:University laboratory.Participants:138 male recreational skiers with surgically diagnosed primary ruptures and 183 apparently healthy male recreational skiers not differing markedly in age or level of exposure to ACL injury.Main Outcome Measures:COL1A1 rs1800012 and COL1A1 rs1107946 polymorphisms.Results:There were significant differences in genotype distribution of the COL1A1 rs1800012 polymorphism between the ACL rupture group and the control group. The GG homozygotes were underrepresented in the ACL rupture group compared with the control group. There were no significant differences in genotype distribution or allele frequency of COL1A1 rs1107946 polymorphisms between the ACL rupture group and the control group. The G-G (COL1A1 rs1800012G and COL1A1 rs1107946G) haplotype was the most common. There were no significant differences in haplotype distribution between the ACL-rupture and control groups.Conclusion:The study showed that GG homozygotes were underrepresented in the ACL-rupture group compared with the control group, which suggests an association with reduced risk of ACL injury.

2018 ◽  
Vol 46 (11) ◽  
pp. 2772-2779 ◽  
Author(s):  
Christopher Nagelli ◽  
Samuel Wordeman ◽  
Stephanie Di Stasi ◽  
Joshua Hoffman ◽  
Tiffany Marulli ◽  
...  

Background: The efficacy of a neuromuscular training (NMT) program to ameliorate known hip biomechanical risk factors for athletes with anterior cruciate ligament reconstruction (ACLR) is currently unknown. Purpose/Hypothesis: The purpose was to quantify the effects of an NMT program on hip biomechanics among athletes with ACLR and to compare posttraining hip biomechanics with a control group. The hypotheses were that known hip biomechanical risk factors of anterior cruciate ligament (ACL) injury would be significantly reduced among athletes with ACLR after the NMT program and that posttraining hip biomechanics between the ACLR and control cohorts would not differ. Study Design: Controlled laboratory study. Methods: Twenty-eight athletes (n = 18, ACLR; n = 10, uninjured) completed a 12-session NMT program. Biomechanical evaluation of a jump-landing task was done before and after completion of the program. Repeated measures analysis of variance was performed to understand the effect of NMT within the ACLR cohort. Two-way analysis of variance was used to compare both groups. Post hoc testing was done for significant interactions. Hip biomechanical variables at initial contact are reported. Results: The athletes with ACLR who completed the NMT program had a significant session × limb interaction ( P = .01) for hip external rotation moment and a significant main effect of session for hip flexion angle ( P = .049) and moment ( P < .001). There was a significant change for the involved ( P = .04; 528% increase) and uninvolved ( P = .04; 57% decrease) limbs from pre- to posttraining for hip rotation moment. The ACLR cohort had an increase in hip flexion angle (14% change) and a decrease in hip flexion moment (65% change) from pre- to posttraining. Posttraining comparison for these same hip biomechanical variables of interest revealed no significant interactions ( P > .05) between the ACLR and control cohorts. There was a significant main effect of group ( P = .02) for hip flexion angle, as the ACLR cohort demonstrated greater hip flexion angle than that of the control group. Conclusion: For athletes with ACLR, hip biomechanical measures of ACL injury risk show significant improvements after completion of an NMT program. Clinical Relevance: Athletes with ACLR who are participating in an NMT program may ameliorate known hip biomechanical risk factors for an ACL injury.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


Author(s):  
Joao Paulo Dias ◽  
Ariful Bhuiyan ◽  
Nabila Shamim

Abstract An estimated number of 300,000 new anterior cruciate ligament (ACL) injuries occur each year in the United States. Although several magnetic resonance (MR) imaging-based ACL diagnostics methods have already been proposed in the literature, most of them are based on machine learning or deep learning strategies, which are computationally expensive. In this paper, we propose a diagnostics framework for the risk of injury in the anterior cruciate ligament (ACL) based on the application of the inner-distance shape context (IDSC) to describe the curvature of the intercondylar notch from MR images. First, the contours of the intercondylar notch curvature from 91 MR images of the distal end of the femur (70 healthy and 21 with confirmed ACL injury) were extracted manually using standard image processing tools. Next, the IDSC was applied to calculate the similarity factor between the extracted contours and reference standard curvatures. Finally, probability density functions of the similarity factor data were obtained through parametric statistical inference, and the accuracy of the ACL injury risk diagnostics framework was assessed using receiver operating characteristic analysis (ROC). The overall results for the area under the curve (AUC) showed that method reached a maximum accuracy of about 66%. Furthermore, the sensitivity and specificity results showed that an optimum discrimination threshold value for the similarity factor can be pursued that minimizes the incidence of false positives and false positives simultaneously.


2021 ◽  
pp. 1-8
Author(s):  
Elena M. D’Argenio ◽  
Timothy G. Eckard ◽  
Barnett S. Frank ◽  
William E. Prentice ◽  
Darin A. Padua

Context: Anterior cruciate ligament (ACL) injuries are a common and devastating injury in women’s soccer. Several risk factors for ACL injury have been identified, but have not yet been examined as potentially dynamic risk factors, which may change throughout a collegiate soccer season. Design: Prospective cohort study. Methods: Nine common clinical screening assessments for ACL injury risk, consisting of range of motion, movement quality, and power, were assessed in 29 Division I collegiate women’s soccer players. Preseason and midseason values were compared for significant differences. Change scores for each risk factor were also correlated with cumulative training loads during the first 10 weeks of a competitive soccer season. Results: Hip external rotation range of motion and power had statistically significant and meaningful differences at midseason compared with preseason, indicating they are dynamic risk factors. There were no significant associations between the observed risk factor changes and cumulative training load. Conclusions: Hip external rotation range of motion and power are dynamic risk factors for ACL injury in women’s collegiate soccer athletes. Serial screening of these risk factors may elucidate stronger associations with injury risk and improve prognostic accuracy of screening tools.


2018 ◽  
Vol 47 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Einar Andreas Sivertsen ◽  
Kari Bente Foss Haug ◽  
Eirik Klami Kristianslund ◽  
Anne-Marie Siebke Trøseid ◽  
Jari Parkkari ◽  
...  

Background: Several single-nucleotide variants (SNVs) in collagen genes have been reported as predisposing factors for anterior cruciate ligament (ACL) tears. However, the evidence is conflicting and does not support a clear association between genetic variants and risk of ACL ruptures. Purpose: To assess the association of previously identified candidate SNVs in genes encoding for collagen and the risk of ACL injury in a population of elite female athletes from high-risk team sports. Study Design: Cohort study; Level of evidence, 2. Methods: A total of 851 female Norwegian and Finnish elite athletes from team sports were included from 2007 to 2011. ACL injuries acquired before inclusion in the cohort were registered by interview. The participants were followed prospectively through 2015 to record new complete ACL injuries. Six selected SNVs were genotyped ( COL1A1: rs1800012, rs1107946; COL3A1: rs1800255; COL5A1: rs12722, rs13946; COL12A1: rs970547). Results: No associations were found between ACL rupture and the SNVs tested. Conclusion: The study does not support a role of the 6 selected SNVs in genes encoding for collagen proteins as risk factors for ACL injury. Clinical Relevance: Genetic profiling to identify athletes at high risk for ACL rupture is not yet feasible.


2009 ◽  
Vol 44 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Jon G. Divine ◽  
Eric J. Wall ◽  
Leamor Kahanov ◽  
...  

Abstract Objective: To present a unique case of a young pubertal female athlete who was prospectively monitored for previously identified anterior cruciate ligament (ACL) injury risk factors for 3 years before sustaining an ACL injury. Background: In prospective studies, previous investigators have examined cross-sectional measures of anatomic, hormonal, and biomechanical risk factors for ACL injury in young female athletes. In this report, we offer a longitudinal example of measured risk factors as the participant matured. Differential Diagnosis: Partial or complete tear of the ACL. Measurements: The participant was identified from a cohort monitored from 2002 until 2007. No injury prevention training or intervention was included during this time in the study cohort. Findings: The injury occurred in the year after the third assessment during the athlete's club basketball season. Knee examination, magnetic resonance imaging findings, and arthroscopic evaluation confirmed a complete ACL rupture. The athlete was early pubertal in year 1 of the study and pubertal during the next 2 years; menarche occurred at age 12 years. At the time of injury, she was 14.25 years old and postpubertal, with closing femoral and tibial physes. For each of the 3 years before injury, she demonstrated incremental increases in height, body mass index, and anterior knee laxity. She also displayed decreased hip abduction and knee flexor strength, concomitant with increased knee abduction loads, after each year of growth. Conclusions: During puberty, the participant increased body mass and height of the center of mass without matching increases in hip and knee strength. The lack of strength and neuromuscular adaptation to match the increased demands of her pubertal stature may underlie the increased knee abduction loads measured at each annual visit and may have predisposed her to increased risk of ACL injury.


2021 ◽  
pp. 1-8
Author(s):  
Dhruv Gupta ◽  
Jeffrey A. Reinbolt ◽  
Cyril J. Donnelly

Knee abduction/adduction moment and knee internal rotation moment are known surrogate measures of anterior cruciate ligament (ACL) load during tasks like sidestepping and single-leg landing. Previous experimental literature has shown that a variety of kinematic strategies are associated or correlated with ACL injury risk; however, the optimal kinematic strategies needed to reduce peak knee moments and ACL injury are not well understood. To understand the complex, multifaceted kinematic factors underpinning ACL injury risk and to optimize kinematics to prevent the ACL injury, a musculoskeletal modeling and simulation experimental design was used. A 14-segment, 37-degree-of-freedom, dynamically consistent skeletal model driven by force/torque actuators was used to simulate whole-body single-leg jump landing kinematics. Using the residual reduction algorithm in OpenSim, whole-body kinematics were optimized to reduce the peak knee abduction/adduction and internal/external rotation moments simultaneously. This optimization was repeated across 30 single-leg jump landing trials from 10 participants. The general optimal kinematic strategy was to bring the knee to a more neutral alignment in the transverse plane and frontal plane (featured by reduced hip adduction angle and increased knee adduction angle). This optimized whole-body kinematic strategy significantly reduced the peak knee abduction/adduction and internal rotation moments, transferring most of the knee load to the hip.


2019 ◽  
Vol 12 ◽  
pp. 117954411986792
Author(s):  
Volkan Kızılgöz ◽  
Ali Kemal Sivrioğlu ◽  
Hasan Aydın ◽  
Gökhan Ragıp Ulusoy ◽  
Türkhun Çetin ◽  
...  

Introduction: Tibial slope angles (TSAs) have been identified as potential risk factors of anterior cruciate ligament (ACL) injury in the literature. A higher body mass index (BMI) might increase the risk of ACL tear because of greater axial compressive force. The aim of this study was to determine the relationship of these factors and the combined effect of BMI and TSA in determination of risk potential for ACL injury. Methods: The preoperative magnetic resonance (MR) images of 81 ACL-injured male knees and of 68 male individuals with no ACL injuries were evaluated by 2 radiologists to measure the TSA. The Mann-Whitney U-test was performed to indicate the significant difference in height, weight, and BMI values. The independent samples t-test was used to determine the differences between ACL-injured and non-injured groups regarding TSA values. Odds ratios were calculated by logistic regression tests, and receiver operating characteristics (ROC) curves revealed the area under the receiver operating characteristics curve (AUC) values to compare the relationships of these parameters with ACL injury. Results: Body mass index, lateral tibial slope (LTS), and medial tibial slope (MTS) were predictive of ACL risk injury. Body mass index alone had the greatest effect among these parameters, and there were no statistically significant differences in coronal tibial slope values between the ACL-ruptured and control groups. The greatest AUC was observed for the combination of BMI, MTS, and LTS. Conclusions: Body mass index, LTS, and MTS angles were associated with ACL injury risk and BMI + MTS + LTS together revealed the greatest effect on ACL injury.


2020 ◽  
Vol 10 (13) ◽  
pp. 4470
Author(s):  
Cyril J. Donnelly ◽  
Ben S. Jackson ◽  
Daniel F. Gucciardi ◽  
Jeff Reinbolt

Injury prevention frameworks are critical for preventing musculoskeletal injury and improving rehabilitation outcomes. However, their relative successes in translation arguably rely on two interlinked components: (1) the quality of the empirical evidence used to develop the intervention (content), and (2) the effective application of behavior change and motivation principles to optimise participant adherence and engagement (delivery). The purpose of this commentary is to develop an injury prevention and rehabilitation framework using the best available physics-based simulation, biomechanics, and behavior change research. The intervention as a whole is entitled biomechanically-informed training (BIT). While investigators have previously examined the relative merits of different training genres (e.g., plyometric, balance, resistance), what makes BIT novel is that it explicitly targets the biomechanical mechanisms that mitigate musculoskeletal injury risk (i.e., force) in ways that are underpinned by established behavior change principles. The four pillars of BIT refer to focused exercise use, irrespective of the training genre, to improve an individual’s: (1) knee flexion dynamics, (2) dynamic trunk control, (3) gastrocnemius muscle strength, and (4) hip muscular strength. We also present experimental data from two independent training studies verifying the efficacy of BIT for the prevention of knee and anterior cruciate ligament (ACL) injury.


2014 ◽  
Vol 2 (12_suppl4) ◽  
pp. 2325967114S0025
Author(s):  
Tomas Vilaseca ◽  
Jorge Chahla ◽  
Gustavo Gomez Rodriguez ◽  
Damián Arroquy ◽  
Gonzalo Perez Herrera ◽  
...  

Objectives: The objective of this study was to analyze whether it is more frequent the presence of a decreased range of motion in the hips of recreational athletes with primary injury of the anterior cruciate ligament (ACL) than in a control group of volunteers without knee pathology. Methods: We included prospectively recreational athletes between 18 and 40 years with an acute ACL injury between January 2011 and January 2013. They were compared with a control group of volunteers recreational athletes without lower limb pathology and in the same range of age. The internal and external rotations passively prior to the point at which the pelvis movement contributes were observed. The results were statistically analyzed using t test for related samples to the hips of patients with ACL injury and t test for independent variables for comparison with the control group. Results: 48 patients with ACL injury and 53 healthy volunteers were evaluated. The ACL group was composed of 32 males and 16 females with an average age of 29.3 years. In the control group 26 males and 27 females were studied with a mean age of 26.6 years. Internal (IR) and external (ER) rotation in the LCA group was 22,9º and 55,5º respectively in the ipsilateral hip and 27,9º and 57,7º in the contralateral. In the control group a 35,9º of IR and 55,2º of ER was observed. The analysis showed an association between ACL injury and hypomotility of the hip further expense of a decrease in internal rotation. The analysis showed an association between ACL injury and hypomotility of the hip at the expense to a greater decrease in internal rotation. Conclusion: We found a statistically significant difference in the mobility of the hips in patients with ACL injury predominantly due to internal rotation, pattern that allows us to interpret this injury not only as an intrinsic etiology of the knee but also of the adjacent joints. We consider very importance to incorporate prevention activities and screening of risk factors regarding to at least high performance athletes.


Sign in / Sign up

Export Citation Format

Share Document