Effect of Different Training Methods on Running Sprint Times in Male Youth

2012 ◽  
Vol 24 (2) ◽  
pp. 170-186 ◽  
Author(s):  
Michael C. Rumpf ◽  
John B. Cronin ◽  
Shane D. Pinder ◽  
Jon Oliver ◽  
Michael Hughes

The primary purpose of this paper was to provide insight into the effect of different training methods on sprinting time in male youth aged 8–18 years. Specific and nonspecific training methods were identified, the participants of the fiveteen studies chategorized into pre, mid- and postpeak height velocity and effect sizes and percent changes calculated for each training method were appropriate. Plyometric training had the most effect on sprint times in pre- and midpeak height velocity participants, while combined training methods were the most efficient in postpeak height velocity participants. However, it is difficult to quantify the effects of different training methods due to the limited knowledge in this area e.g., resisted training on pre-PHV participants. Furthermore, it may be worthwhile to investigate additional variables (i.e., stride length, stride frequency, horizontal force), to better determine effect of training methods in different maturity statuses, the development of sprinting and possible stages where individual development can be optimized by training.

2021 ◽  
Vol 77 (1) ◽  
pp. 25-35
Author(s):  
Alberto Sánchez-Sixto ◽  
Andrew J Harrison ◽  
Pablo Floría

Abstract The purpose of this study was to assess and compare the effects of plyometric training and combined training programs on vertical jump kinematics and kinetics of female basketball players. Thirty-six female basketball players were included in the study and further divided into three groups: plyometric training, n = 11; combined training n =13; and a control group, n =12. Combined training comprised full squat exercise with low resistance (50-65% 1RM) and low volume (3-6 repetitions/set) combined with repeated jumps. Plyometric training included drop jumps and repeated jumps. Both training methods showed a moderate increase in jump performance, although combined training achieved substantially higher values than plyometric training alone. After plyometric training, the vertical velocity and displacement of the center of mass of the countermovement jump increased, while force variables decreased. Combined training increased power, vertical velocity and displacement of the center of mass, but force variables remained unchanged. Both training methods improved jump height, velocity and displacement of the center of mass. Combined training maintained force measures while plyometric training decreased them. These results indicate that combined training might provide better outcomes on jump performance than plyometric training alone. It also appears important to measure biomechanical variables to appropriately interpret the effects of different training methods.


2015 ◽  
Vol 27 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Robert W. Meyers ◽  
Jonathan L. Oliver ◽  
Michael G. Hughes ◽  
John B. Cronin ◽  
Rhodri S. Lloyd

The purpose of this study was to examine the natural development of the mechanical features of sprint performance in relation to maturation within a large cohort of boys. Three hundred and thirty-six boys (11-15 years) were analyzed for sprint performance and maturation. Maximal speed, stride length (SL), stride frequency (SF), flight time (FT) and contact time (CT) were assessed during a 30m sprint. Five maturation groups (G1-5) were established based on age from peak height velocity (PHV) where G1=>2.5years pre-PHV, G2 = 2.49-1.5years pre-PHV, G3 = 1.49-0.5years pre-PHV, G4 = 0.49years pre- to 0.5years post-PHV and G5 = 0.51-1.5years post-PHV. There was no difference in maximal speed between G1, G2 and G3 but those in G4 and G5 were significantly faster (p < .05) than G1-3. Significant increases (p < .05) in SL were observed between groups with advancing maturation, except G4 and G5 (p > .05). SF decreased while CT increased (both p < .05) between G1, G2 and G3, but no further significant changes (p > .05) were observed for either variable between G3, G4 and G5. While G1-3 increased their SL, concomitant decreases in SF and increases in CT prevented them from improving maximal speed. Maximal sprint speed appears to develop around and post-PHV as SF and CT begin to stabilize, with increases in maximal sprint speed in maturing boys being underpinned by increasing SL.


2006 ◽  
Vol 86 (7) ◽  
pp. 987-1000 ◽  
Author(s):  
Chia-Ling Ho ◽  
Kenneth G Holt ◽  
Elliot Saltzman ◽  
Robert C Wagenaar

Abstract Background and Purpose. Children with cerebral palsy (CP) often are faced with difficulty in walking. The purpose of this experiment was to determine the effects of functional electrical stimulation (FES) applied to the gastrocnemius-soleus muscle complex on the ability to produce appropriately timed force and reduce stiffness (elastic property of the body) and on stride length and stride frequency during walking. Subjects and Methods. Thirteen children with spastic CP (including 4 children who were dropped from the study due to their inability to cooperate) and 6 children who were developing typically participated in the study. A crossover study design was implemented. The children with spastic CP were randomly assigned to either a group that received FES for 15 trials followed by no FES for 15 trials or a group that received no FES for 15 trials followed by FES for 15 trials. The children who were having typical development walked without FES. Kinematic data were collected for the children with CP in each walking condition and for the children who were developing typically. Impulse (force-producing ability) and stiffness were estimated from an escapement-driven pendulum and spring system model of human walking. Stride length and stride frequency also were measured. To compare between walking conditions and between the children with CP and the children who were developing typically, dimensional analysis and speed normalization procedures were used. Results. Nonparametric statistics showed that there was no significant difference between the children with CP in the no-FES condition and the children who were developing typically on speed-normalized dimensionless impulse. In contrast, the children with CP in the FES condition had a significantly higher median value than the children who were developing typically. The FES significantly increased speed-normalized dimensionless impulse from 10.02 to 16.32 when comparing walking conditions for the children with CP. No significant differences were found between walking conditions for stiffness, stride length, and stride frequency. Discussion and Conclusion. The results suggest that FES is effective in increasing impulse during walking but not in decreasing stiffness. The effect on increasing impulse does not result in more typical spatiotemporal gait parameters. [Ho CL, Holt KG, Saltzman E, Wagenaar RC. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. Phys Ther. 2006;86:987–1000.]


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7989
Author(s):  
Stefano Lanzi ◽  
Joël Boichat ◽  
Luca Calanca ◽  
Lucia Mazzolai ◽  
Davide Malatesta

This study aimed to investigate the effects of supervised exercise training (SET) on spatiotemporal gait and foot kinematics parameters in patients with symptomatic lower extremity peripheral artery disease (PAD) during a 6 min walk test. Symptomatic patients with chronic PAD (Fontaine stage II) following a 3 month SET program were included. Prior to and following SET, a 6 min walk test was performed to assess the 6 min walking distance (6MWD) of each patient. During this test, spatiotemporal gait and foot kinematics parameters were assessed during pain-free and painful walking conditions. Twenty-nine patients with PAD (65.4 ± 9.9 years.) were included. The 6MWD was significantly increased following SET (+10%; p ≤ 0.001). The walking speed (+8%) and stride frequency (+5%) were significantly increased after SET (p ≤ 0.026). The stride length was only significantly increased during the pain-free walking condition (+4%, p = 0.001), whereas no significant differences were observed during the condition of painful walking. Similarly, following SET, the relative duration of the loading response increased (+12%), the relative duration of the foot-flat phase decreased (−3%), and the toe-off pitch angle significantly increased (+3%) during the pain-free walking condition alone (p ≤ 0.05). A significant positive correlation was found between changes in the stride length (r = 0.497, p = 0.007) and stride frequency (r = 0.786, p ≤ 0.001) during pain-free walking condition and changes in the 6MWD. A significant negative correlation was found between changes in the foot-flat phase during pain-free walking condition and changes in the 6MWD (r = −0.567, p = 0.002). SET was found to modify the gait pattern of patients with symptomatic PAD, and many of these changes were found to occur during pain-free walking. The improvement in individuals’ functional 6 min walk test was related to changes in their gait pattern.


2013 ◽  
pp. 1650-1674
Author(s):  
Bert Bongers ◽  
Stuart Smith

This chapter outlines a Human-Computer Interaction inspired approach to rehabilitation of neurological damage (e.g. spinal cord injury) that employs novel, computer guided multimodal feedback in the form of video games or generation of musical content. The authors report an initial exploratory phase of a project aimed at gaining insight into the development of spinal cord injury (SCI) rehabilitation tools. This exploration included observation of a number of patient interactions in their current rehabilitation routines; the development of initial prototype proposals; and finally through to the development of rapid prototypes which can be used in rehabilitation settings. This initial phase has yielded an understanding of the issues surrounding the development of novel technologies for rehabilitation that will direct further research in the area of rehabilitation engineering. Through the integration of novel methods, in particular the use of interactive physical devices, to the rehabilitation of SCI patients, larger scale research into efficacy of the devices we are developing can be undertaken. These developments may eventually beneficially impact upon the instruments used, the training methods applied and the rehabilitation routines undertaken for individuals living with neurological damage.


2015 ◽  
Vol 28 (05) ◽  
pp. 312-317 ◽  
Author(s):  
Gómez Cisneros ◽  
Varela del Arco ◽  
Santiag Llorente ◽  
Santos González ◽  
F. J. López-Sanromán

Summary Objectives: The aim of the present study was to quantify by accelerometry the trotting pattern of adult horses sedated with two different doses of acepromazine, in order to assess the use of this drug in equine lameness evaluations. Methods: Seven mature horses were used and three treatments were administered to each horse: saline solution, acepromazine (0.01 mg/kg), and acepromazine (0.02 mg/ kg). The portable gait analyzer used consisted of three orthogonal accelerometers that measure accelerations along the dorso -ventral, longitudinal, and lateral axes. Baseline values were obtained and after treatment, accelerometric recordings were repeated every five minutes during the first 20 minutes after the injection and then every 10 minutes thereafter for two hours. Ground-tolip distance was also measured. Results: Administration of acepromazine decreased some of the variables investigated and differences between doses were observed. Speed, stride frequency, and stride length were significantly reduced following treatments. For coordination parameters, no significant differences among values were observed. Energetic variables suffered only weak reductions whereas ground-to-lip distance values were significantly decreased up to 120 minutes after treatment. Clinical significance: Acepromazine produces significant alterations in the gait pattern with differences between doses, but it does not affect coordination variables in normal unexcited horses, and at a dose of 0.01 mg/kg may be the tranquilizer of choice for evaluating lameness in this setting.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Mireya Becero ◽  
Aritz Saitua ◽  
David Argüelles ◽  
Antonia Lucía Sánchez de Medina ◽  
Cristina Castejón-Riber ◽  
...  

Abstract Background Capacitive resistive electric transfer (CRET), a radiofrequency at 448 kHz, resulted in increased superficial and deep temperature and hemoglobin saturation, faster elimination of metabolic and inflammatory products and enhanced sport performance in humans. This research aims to investigate whether the application of CRET affects the locomotor pattern in horses and to assess whether an accumulative effect appears when two CRET sessions are applied two consecutive days. Methods Nine horses were subjected to two CRET sessions applied in both right and left sides of neck, shoulder, back and croup. The horses were exercised on a treadmill, at walk and at trot, before CRET application and at 2, 6 and 12 h after. A second CRET session was applied next day, and the animals were evaluated again at the same times (i.e. at 26, 30 and 36 h after the first session). Between 5 and 7 days later, the same horses were subjected to a sham procedure and they were evaluated in the same times as in the CRET experiment. During treadmill exercise, locomotor parameters were measured with a triaxial accelerometer fixed in the pectoral region and in the sacrum midline. Results The sham procedure did not affect any of the accelerometric variables studied. CRET applications resulted in greater total powers, which resulted in absolute increased dorsoventral, mediolateral and longitudinal powers. However, a reduction in dorsoventral power expressed as a percentage of total power was found. Stride regularity increased. The greater total power resulted in longer stride length and because the velocity was kept fixed on the treadmill, stride frequency decreased. An accumulative effect of CRET application was only found in stride length and frequency. Conclusions It appears that CRET is a useful technique to enhance power and to elongate the stride at defined walk and trot velocities. The effect of these changes on performance should be studied for horses competing in different sport disciplines.


Koedoe ◽  
1982 ◽  
Vol 25 (1) ◽  
Author(s):  
R. B Huey

Sprint capacities (maximum speed, acceleration, stride length, stride frequency) of diurnal lizards from the Kalahari were measured on sandy substrates in the laboratory. Despite major interfamilial differences in body sizes and in body proportions, measures of sprint capacity were remarkably similar among families: some heavy bodied skinks ran as fast as did some sleek lacertids. Sprint capacities change during ontogeny in lizards. Maximum speed, stride length, and possibly acceleration all increase with size and presumably with age.


2012 ◽  
Vol 89 (1) ◽  
pp. 127-160 ◽  
Author(s):  
David Morris

Edgar Wood and Middleton are closely entwined. Until his fifties, Wood engaged in the life of his native town, while his architecture gradually enriched its heritage. The paper begins with Woods character and gives an insight into his wider modus operandi with regard to fellow practitioners. A stylistic appraisal of his surviving Middleton area buildings draws attention to his individual development of Arts and Crafts architecture, a pinnacle of which was Long Street Methodist Church and Schools. The impact of J. Henry Sellers is examined, and the emergence of their subsequent modernism is traced through a number of pioneering designs. Stylistic connections with Charles Rennie Mackintosh of Glasgow and the Viennese architect Josef Hoffmann imply that Woods experiments were sometimes part of a wider stylistic development. Finally, a small cluster of Middleton houses summarizes Woods architectural journey, illustrating his incremental transition from Arts and Crafts to early Modern Movement architecture.


Sign in / Sign up

Export Citation Format

Share Document