scholarly journals Maximal Sprint Speed in Boys of Increasing Maturity

2015 ◽  
Vol 27 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Robert W. Meyers ◽  
Jonathan L. Oliver ◽  
Michael G. Hughes ◽  
John B. Cronin ◽  
Rhodri S. Lloyd

The purpose of this study was to examine the natural development of the mechanical features of sprint performance in relation to maturation within a large cohort of boys. Three hundred and thirty-six boys (11-15 years) were analyzed for sprint performance and maturation. Maximal speed, stride length (SL), stride frequency (SF), flight time (FT) and contact time (CT) were assessed during a 30m sprint. Five maturation groups (G1-5) were established based on age from peak height velocity (PHV) where G1=>2.5years pre-PHV, G2 = 2.49-1.5years pre-PHV, G3 = 1.49-0.5years pre-PHV, G4 = 0.49years pre- to 0.5years post-PHV and G5 = 0.51-1.5years post-PHV. There was no difference in maximal speed between G1, G2 and G3 but those in G4 and G5 were significantly faster (p < .05) than G1-3. Significant increases (p < .05) in SL were observed between groups with advancing maturation, except G4 and G5 (p > .05). SF decreased while CT increased (both p < .05) between G1, G2 and G3, but no further significant changes (p > .05) were observed for either variable between G3, G4 and G5. While G1-3 increased their SL, concomitant decreases in SF and increases in CT prevented them from improving maximal speed. Maximal sprint speed appears to develop around and post-PHV as SF and CT begin to stabilize, with increases in maximal sprint speed in maturing boys being underpinned by increasing SL.

Author(s):  
Kaushik Talukdar ◽  
Dr Craig Harrison ◽  
Professor Mike McGuigan ◽  
Dr Robert Borotkanics

Sprinting speed is a crucial physical capacity and can change throughout an athlete’s growth. Previous research has shown that both kinetic and kinematic variables change across maturation in young males. However, due to the changes in growth and hormonal levels, the kinetic and kinematic factors associated with sprinting may vary in young females compared to their male counterparts.  Therefore, determining kinetics (force, maximal power) and kinematics (step length, step frequency, contact time and flight time) associated with sprinting in young females can provide valuable insights into training for this cohort. Thirty-two young female athletes, 11 mid-peak height velocity (PHV) age (12.8±0.6) and 21 post PHV (13.5±0.93) performed two 15 and 30 m sprints each. Theoretical velocity, maximal velocity, step length, force and power max were significantly higher in post PHV girls (p<0.05). Univariate regression analysis reported that the best predictors of velocity (15 and 30 m) were contact time, power max, stride frequency, step length and leg length with contact time being the strongest predictor. The findings of this research provide insight into the natural development of sprinting in young females and will help practitioners specifically develop training programs that can effectively improve sprinting kinetics and kinematics in this cohort.


Author(s):  
Elena Mainer-Pardos ◽  
Oliver Gonzalo-Skok ◽  
Hadi Nobari ◽  
Demetrio Lozano ◽  
Jorge Pérez-Gómez

Abstract Background Several studies have observed the contribution of chronological age, biological maturation, and anthropometric characteristics to sprinting performance in young soccer players. Nevertheless, there are no studies that have analysed the contribution of these characteristics to running speed qualities in adolescent female soccer players. Objective This study investigated age-related differences in sprint performance in adolescent female soccer players. Also, it examined the possible influence of anthropometry [body mass and body mass index (BMI)] and biological maturation [age at peak height velocity (APHV)] in sprint performance. Methods Eighty adolescent female soccer players [under (U) 14, n = 20; U16, n = 37; U18, n = 23] participated in this study. Players were tested for 40 m sprint (each 10 m split times). Results Posthoc analysis revealed better performance in all split sprint times of older soccer players (U18 and U16) compared with younger category (F: 3.380 to 6.169; p < 0.05; ES: 0.64 to 1.33). On the contrary in all split sprint times, there were no significant changes between U16 and U18 (p < 0.05; ES: 0.03 to 0.17). ANCOVA revealed differences in all parameters between groups, controlled for APHV (p < 0.05). In contrast, all between-group differences disappeared after body mass and BMI adjustment (p > 0.05). Finally, the results indicate that BMI and body mass were significantly correlated with 40 m sprint (p < 0.05; r: -0.31) and 20 m flying (p < 0.01; r: 0.38), respectively. Conclusion In the present players’ sample, body mass and BMI had a significant impact on running speed qualities.


2016 ◽  
Vol 11 (2) ◽  
pp. 240-246 ◽  
Author(s):  
David Rodríguez-Rosell ◽  
Felipe Franco-Márquez ◽  
Fernando Pareja-Blanco ◽  
Ricardo Mora-Custodio ◽  
Juan M. Yáñez-García ◽  
...  

Purpose:To analyze the effects of low-load, high-velocity resistance training (RT) combined with plyometrics on physical performance in pre-peak-height-velocity (PHV) soccer players.Methods:Thirty young soccer players from the same academy were randomly assigned to either a strength training (STG, n = 15) or a control group (CG, n = 15). Strength training consisted of full squat exercise with low load (45–58% 1RM) and low volume (4–8 repetitions/set) combined with jumps and sprints twice a week over 6 wk of preseason. The effect of the training protocol was assessed using sprint performance over 10 and 20 m, countermovement jump, estimated 1-repetition maximum, and average velocity attained against all loads common to pre- and posttests in full squat.Results:STG showed significant improvements (P = .004–.001) and moderate to very large standardized effects (ES = 0.71–2.10) in all variables measured, whereas no significant gains were found in CG (ES = –0.29 to 0.06). Moreover, significant test × group interactions (P < .003–.001) and greater between-groups ESs (0.90–1.97) were found for all variables in favor of STG compared with CG.Conclusion:Only 6 wk of preseason low-volume and low-load RT combined with plyometrics can lead to relevant improvements in strength, jump, and sprint performance. Thus, the combination of field soccer training and lightweight strength training could be used for a greater development of the tasks critical to soccer performance in pre-PHV soccer players.


2015 ◽  
Vol 27 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Robert W. Meyers ◽  
Jon L. Oliver ◽  
Michael G. Hughes ◽  
Rhodri S. Lloyd ◽  
John Cronin

The purpose of this study was to examine the reliability of the spatiotemporal determinants of maximal sprinting speed in boys over single and multiple steps. Fifty-four adolescent boys (age = 14.1 ± 0.7 years [range = 12.9–15.7 years]; height = 1.63 ± 0.09 m; body mass = 55.3 ± 13.3 kg; -0.31 ± 0.90 age from Peak Height Velocity (PHV) in years; mean ± s) volunteered to complete a 30 m sprint test on 3 occasions over a 2-week period. Speed, step length, step frequency, contact time, and flight time were assessed via an optical measurement system. Speed and step characteristics were obtained from the single-fastest step and average of the 2 and 4 fastest consecutive steps. Pairwise comparison of consecutive trials revealed the coefficient of variation (CV) for speed was greater in 4-step (CV = 7.3 & 7.5%) compared with 2-step (CV = 4.2 & 4.1%) and 1-step (CV = 4.8 & 4.6%) analysis. The CV of step length, step frequency and contact time ranged from 4.8 to 7.5% for 1-step, 3.8–5.0% for 2-step and 4.2–7.5% for 4-step analyses across all trials. An acceptable degree of reliability was achieved for the spatiotemporal and performance variables assessed in this study. Two-step analysis demonstrated the highest degree of reliability for the key spatiotemporal variables, and therefore may be the most suitable approach to monitor the spatiotemporal characteristics of maximal sprint speed in boys.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1320
Author(s):  
Humberto Peña-Jorquera ◽  
Valentina Campos-Núñez ◽  
Kabir P. Sadarangani ◽  
Gerson Ferrari ◽  
Carlos Jorquera-Aguilera ◽  
...  

This study aimed to determine whether pupils who have breakfast just before a cognitive demand, do not regularly skip breakfast, and consume a high-quality breakfast present higher cognitive performance than those who do not; furthermore, to establish differences according to their nutritional status. In this study, 1181 Chilean adolescents aged 10–14 years participated. A global cognitive score was computed through eight tasks, and the body mass index z-score (BMIz) was calculated using a growth reference for school-aged adolescents. The characteristics of breakfast were self-reported. Analyses of covariance were performed to determine differences in cognitive performance according to BMIz groups adjusted to sex, peak height velocity, physical fitness global score, and their schools. A positive association was found in adolescents’ cognitive performance when they had breakfast just before cognitive tasks, did not regularly skip breakfast, presented at least two breakfast quality components, and included dairy products. No significant differences were found between breakfast components, including cereal/bread and fruits/fruit juice. Finally, pupils who were overweight/obese who declared that they skipped breakfast regularly presented a lower cognitive performance than their normal-BMIz peers. These findings suggest that adolescents who have breakfast just prior to a cognitive demand and regularly have a high quality breakfast have better cognitive performance than those who do not. Educative nutritional strategies should be prioritized, especially in “breakfast skippers” adolescents living with overweight/obesity.


2020 ◽  
Vol 33 (12) ◽  
pp. 1589-1595
Author(s):  
Mariana del Pino ◽  
Virginia Fano ◽  
Paula Adamo

AbstractObjectivesIn general population, there are three phases in the human growth curve: infancy, childhood and puberty, with different main factors involved in their regulation and mathematical models to fit them. Achondroplasia children experience a fast decreasing growth during infancy and an “adolescent growth spurt”; however, there are no longitudinal studies that cover the analysis of the whole post-natal growth. Here we analyse the whole growth curve from infancy to adulthood applying the JPA-2 mathematical model.MethodsTwenty-seven patients, 17 girls and 10 boys with achondroplasia, who reached adult size, were included. Height growth data was collected from birth until adulthood. Individual growth curves were estimated by fitting the JPA-2 model to each individual’s height for age data.ResultsHeight growth velocity curves show that after a period of fast decreasing growth velocity since birth, with a mean of 9.7 cm/year at 1 year old, the growth velocity is stable in late preschool years, with a mean of 4.2 cm/year. In boys, age and peak height velocity in puberty were 13.75 years and 5.08 cm/year and reach a mean adult height of 130.52 cm. In girls, the age and peak height velocity in puberty were 11.1 years and 4.32 cm/year and reach a mean adult height of 119.2 cm.ConclusionsThe study of individual growth curves in achondroplasia children by the JPA-2 model shows the three periods, infancy, childhood and puberty, with a similar shape but lesser in magnitude than general population.


2017 ◽  
Vol 12 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Ashley J Cripps ◽  
Christopher Joyce ◽  
Carl T Woods ◽  
Luke S Hopper

This study compared biological maturation, anthropometric, physical and technical skill measures between talent and non-talent identified junior Australian footballers. Players were recruited from the under 16 Western Australian Football League and classified as talent (state representation; n = 25, 15.7 ± 0.3 y) or non-talent identified (non-state representation; n = 25, 15.6 ± 0.4 y). Players completed a battery of anthropometric, physical and technical skill assessments. Maturity was estimated using years from peak height velocity calculations. Binary logistic regression was used to identify the variables demonstrating the strongest association with the main effect of ‘status’. A receiver operating characteristic curve was used to assess the level of discrimination provided by the strongest model. Talent identified under 16 players were biologically older, had greater stationary and dynamic leaps and superior handball skill when compared to their non-talent identified counterparts. The strongest model of status included standing height, non-dominant dynamic vertical jump and handball outcomes (AUC = 83.4%, CI = 72.1%–95.1%). Biological maturation influences anthropometric and physical capacities that are advantageous for performance in Australian football; talent identification methods should factor biological maturation as a confound in the search for junior players who are most likely to succeed in senior competition.


2017 ◽  
Vol 135 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Ricardo Ribeiro Agostinete ◽  
Igor Hideki Ito ◽  
Han Kemper ◽  
Carlos Marcelo Pastre ◽  
Mário Antônio Rodrigues-Júnior ◽  
...  

ABSTRACT CONTEXT AND OBJECTIVE: Peak height velocity (PHV) is an important maturational event during adolescence that affects skeleton size. The objective here was to compare bone variables in adolescents who practiced different types of sports, and to identify whether differences in bone variables attributed to sports practice were dependent on somatic maturation status. DESIGN AND SETTING: Cross-sectional study, São Paulo State University (UNESP). METHODS: The study was composed of 93 adolescents (12 to 16.5 years old), divided into three groups: no-sport group (n = 42), soccer/basketball group (n = 26) and swimming group (n = 25). Bone mineral density and content were measured using dual-energy x-ray absorptiometry and somatic maturation was estimated through using peak height velocity. Data on training load were provided by the coaches. RESULTS: Adolescents whose PHV occurred at an older age presented higher bone mineral density in their upper limbs (P = 0.018). After adjustments for confounders, such as somatic maturation, the swimmers presented lower values for bone mineral density in their lower limbs, spine and whole body. Only the bone mineral density in the upper limbs was similar between the groups. There was a negative relationship between whole-body bone mineral content and the weekly training hours (β: -1563.967; 95% confidence interval, CI: -2916.484 to -211.450). CONCLUSION: The differences in bone variables attributed to sport practice occurred independently of maturation, while high training load in situations of hypogravity seemed to be related to lower bone mass in swimmers.


2019 ◽  
Vol 14 (5) ◽  
pp. 674-680 ◽  
Author(s):  
Olaf Prieske ◽  
Helmi Chaabene ◽  
Christian Puta ◽  
David G. Behm ◽  
Dirk Büsch ◽  
...  

Purpose: To examine the effects of drop height on drop-jump (DJ) performance and on associations between DJ and horizontal-jump/sprint performances in adolescent athletes. Methods: Male (n = 119, 2.5 [0.6] y post-peak-height velocity) and female (n = 120, 2.5 [0.5] y post-peak-height velocity) adolescent handball players (national level) performed DJs in randomized order using 3 drop heights (20, 35, and 50 cm). DJ performance (jump height, reactive strength index [RSI]) was analyzed using the Optojump Next system. In addition, correlations were computed between DJ height and RSI with standing-long-jump and 20-m linear-sprint performances. Results: Statistical analyses revealed medium-size main effects of drop height for DJ height and RSI (P < .001, 0.63 ≤ d ≤ 0.71). Post hoc tests indicated larger DJ heights from 20 to 35 and 35 to 50 cm (P ≤ .031, 0.33 ≤ d ≤ 0.71) and better RSI from 20- to 35-cm drop height (P < .001, d = 0.77). No significant difference was found for RSI between 35- and 50-cm drop height. Irrespective of drop height, associations of DJ height and RSI were small with 5-m-split time (−.27 ≤ r ≤ .05), medium with 10-m-split time (−.44 ≤ r ≤ .14), and medium to large with 20-m sprint time and standing-long-jump distance (−.57 ≤ r ≤ .22). Conclusions: The present findings indicate that, irrespective of sex, 35-cm drop heights are best suited to induce rapid and powerful DJ performance (ie, RSI) during reactive strength training in elite adolescent handball players. Moreover, training-related gains in DJ performance may at least partly translate to gains in horizontal jump and longer sprint distances (ie, ≥20-m) and/or vice versa in male and female elite adolescent athletes, irrespective of drop height.


Sign in / Sign up

Export Citation Format

Share Document