scholarly journals Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development—Current State-of-the-Art and Future Perspectives

2022 ◽  
Vol 74 (1) ◽  
pp. 141-206
Author(s):  
Sonia Youhanna ◽  
Aurino M. Kemas ◽  
Lena Preiss ◽  
Yitian Zhou ◽  
Joanne X. Shen ◽  
...  
2011 ◽  
Vol 999 (999) ◽  
pp. 1-29
Author(s):  
Jeremy N. Burrows ◽  
Kelly Chibale ◽  
Timothy N.C. Wells

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 760 ◽  
Author(s):  
Alysson R. Muotri

Human brain organoids, generated from pluripotent stem cells, have emerged as a promising technique for modeling early stages of human neurodevelopment in controlled laboratory conditions. Although the applications for disease modeling in a dish have become routine, the use of these brain organoids as evolutionary tools is only now getting momentum. Here, we will review the current state of the art on the use of brain organoids from different species and the molecular and cellular insights generated from these studies. Besides, we will discuss how this model might be beneficial for human health and the limitations and future perspectives of this technology.


2018 ◽  
Vol 30 (39) ◽  
pp. 1801702 ◽  
Author(s):  
Rosalind J. Gummow ◽  
George Vamvounis ◽  
M. Bobby Kannan ◽  
Yinghe He

2011 ◽  
Vol 11 (10) ◽  
pp. 1226-1254 ◽  
Author(s):  
Jeremy N. Burrows ◽  
Kelly Chibale ◽  
Timothy N.C. Wells

Zygote ◽  
2016 ◽  
Vol 24 (5) ◽  
pp. 635-653 ◽  
Author(s):  
M.A. Filatov ◽  
Y.V. Khramova ◽  
M.V. Kiseleva ◽  
I.V. Malinova ◽  
E.V. Komarova ◽  
...  

SummaryIn the present review, the main strategies of female fertility preservation are covered. Procedures of fertility preservation are necessary for women who suffer from diseases whose treatment requires the use of aggressive therapies, such as chemotherapy and radiotherapy. These kinds of therapy negatively influence the health of gametes and their progenitors. The most commonly used method of female fertility preservation is ovarian tissue cryopreservation, followed by the retransplantation of thawed tissue. Another approach to female fertility preservation that has been actively developed lately is the ovarian tissuein vitroculture. The principal methods, advantages and drawbacks of these two strategies are discussed in this article.


Author(s):  
Yi Xiang ◽  
Kathleen Miller ◽  
Jiaao Guan ◽  
Wisarut Kiratitanaporn ◽  
Min Tang ◽  
...  

AbstractThe pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.


2001 ◽  
Vol 7 (S2) ◽  
pp. 622-623
Author(s):  
Xiaoyou Ying ◽  
Jean Sprinkle Cavallo ◽  
Bruce McCullough

Digital microscopy, the integration of digital and microscopy technologies, was initiated for quantitative microscopic image analysis, but it is now for almost all microscopy applications. During the past decade, with the advance of digital technologies, digital microscopy imaging is becoming an indispensable technology in drug discovery.We started establishing state-of-the-art digital microscopy imaging for drug discovery with the investigation of bioimaging applications at our US research site. Our results shown that all the top 5 bioimaging needs require computer-aided microscopy. Based on this investigation and our review of the microscopy imaging applications in the pharmaceutical industry, we determined four directions for microscopy in drug discovery: multidimensional/multimodal microscopy, digitalization, automation, and bioimage informatics.Multidimensional/multimodal microscopy imaging is required by the nature of biological research, which is fundamental in drug discovery. From genomic imaging to pathology observation, we require biological details and compound activities at the levels from subcellular organelles to organ tissues, from cellular signaling to anatomical locations of compounds.


Sign in / Sign up

Export Citation Format

Share Document