scholarly journals In Vivo Beta-Cell Imaging with VMAT 2 Ligands - Current State-of-the-Art and Future Perspectives

2010 ◽  
Vol 16 (14) ◽  
pp. 1568-1581 ◽  
Author(s):  
Rajakrishnan Veluthakal ◽  
Paul Harris
2017 ◽  
Vol 15 (2) ◽  
pp. 486-494 ◽  
Author(s):  
Lieke Joosten ◽  
Maarten Brom ◽  
Hanneke Peeters ◽  
Sandra Heskamp ◽  
Martin Béhé ◽  
...  

Author(s):  
C.- Shiue ◽  
A. Schmitz ◽  
R. Schirrmacher ◽  
G. Shiue ◽  
A. Alavi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shreeya Sriram ◽  
Shitij Avlani ◽  
Matthew P. Ward ◽  
Shreyas Sen

AbstractContinuous multi-channel monitoring of biopotential signals is vital in understanding the body as a whole, facilitating accurate models and predictions in neural research. The current state of the art in wireless technologies for untethered biopotential recordings rely on radiative electromagnetic (EM) fields. In such transmissions, only a small fraction of this energy is received since the EM fields are widely radiated resulting in lossy inefficient systems. Using the body as a communication medium (similar to a ’wire’) allows for the containment of the energy within the body, yielding order(s) of magnitude lower energy than radiative EM communication. In this work, we introduce Animal Body Communication (ABC), which utilizes the concept of using the body as a medium into the domain of untethered animal biopotential recording. This work, for the first time, develops the theory and models for animal body communication circuitry and channel loss. Using this theoretical model, a sub-inch$$^3$$ 3 [1″ × 1″ × 0.4″], custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation $$>99\%$$ > 99 % when compared to traditional wireless communication modalities, with a 50$$\times$$ × reduction in power consumption.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 760 ◽  
Author(s):  
Alysson R. Muotri

Human brain organoids, generated from pluripotent stem cells, have emerged as a promising technique for modeling early stages of human neurodevelopment in controlled laboratory conditions. Although the applications for disease modeling in a dish have become routine, the use of these brain organoids as evolutionary tools is only now getting momentum. Here, we will review the current state of the art on the use of brain organoids from different species and the molecular and cellular insights generated from these studies. Besides, we will discuss how this model might be beneficial for human health and the limitations and future perspectives of this technology.


2017 ◽  
pp. 605-625
Author(s):  
M. Brom ◽  
W. A. Eter ◽  
I. van der Kroon ◽  
S. M. A. Willekens ◽  
A. Eek ◽  
...  

2018 ◽  
Vol 30 (39) ◽  
pp. 1801702 ◽  
Author(s):  
Rosalind J. Gummow ◽  
George Vamvounis ◽  
M. Bobby Kannan ◽  
Yinghe He

Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 589-603 ◽  
Author(s):  
J. KEISER

SUMMARYSchistosomiasis and food-borne trematodiases are chronic parasitic diseases affecting millions of people mostly in the developing world. Additional drugs should be developed as only few drugs are available for treatment and drug resistance might emerge. In vitro and in vivo whole parasite screens represent essential components of the trematodicidal drug discovery cascade. This review describes the current state-of-the-art of in vitro and in vivo screening systems of the blood fluke Schistosoma mansoni, the liver fluke Fasciola hepatica and the intestinal fluke Echinostoma caproni. Examples of in vitro and in vivo evaluation of compounds for activity are presented. To boost the discovery pipeline for these diseases there is a need to develop validated, robust high-throughput in vitro systems with simple readouts.


Sign in / Sign up

Export Citation Format

Share Document