scholarly journals Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density

2015 ◽  
Vol 1 (9) ◽  
pp. e1500469 ◽  
Author(s):  
Elliott Lee Hazen ◽  
Ari Seth Friedlaender ◽  
Jeremy Arthur Goldbogen

Terrestrial predators can modulate the energy used for prey capture to maximize efficiency, but diving animals face the conflicting metabolic demands of energy intake and the minimization of oxygen depletion during a breath hold. It is thought that diving predators optimize their foraging success when oxygen use and energy gain act as competing currencies, but this hypothesis has not been rigorously tested because it has been difficult to measure the quality of prey that is targeted by free-ranging animals. We used high-resolution multisensor digital tags attached to foraging blue whales (Balaenoptera musculus) with concurrent acoustic prey measurements to quantify foraging performance across depth and prey density gradients. We parameterized two competing physiological models to estimate energy gain and expenditure based on foraging decisions. Our analyses show that at low prey densities, blue whale feeding rates and energy intake were low to minimize oxygen use, but at higher prey densities feeding frequency increased to maximize energy intake. Contrary to previous paradigms, we demonstrate that blue whales are not indiscriminate grazers but instead switch foraging strategies in response to variation in prey density and depth to maximize energetic efficiency.

Author(s):  
Harish Prakash ◽  
Stefan Greif ◽  
Yossi Yovel ◽  
Rohini Balakrishnan

Prey signalling in aggregation become more conspicuous with increasing numbers and tend to attract more predators. Such grouping may, however, benefit prey by lowering the risk of being captured due to the predator's difficulty in targeting individuals. Previous studies have investigated anti-predatory benefits of prey aggregation using visual predators, but it is unclear whether such benefits are gained in an auditory context. We investigated whether katydids of the genus Mecopoda gain protection from their acoustically eavesdropping bat predator, Megaderma spasma, when calling in aggregation. In a choice experiment, bats approached calls of prey aggregations more often than those of prey calling alone, indicating that prey calling in aggregation are at higher risk. In prey capture tasks, however, the average time taken, and the number of flight passes made by bats before capturing a katydid, were significantly higher for prey calling in aggregation as compared to calling alone, indicating that prey face lower predation risk when calling in aggregation. Another common anti-predatory strategy, calling from within vegetation, increased the time taken by bats to capture katydids calling alone but did not increase the time taken to capture prey calling from aggregations. The increased time taken to capture a prey calling in aggregation compared to solitary calling prey offers an escape opportunity, thus providing prey signalling acoustically in aggregations with anti-predatory benefits. For bats, greater detectability of calling prey aggregations is offset by lower foraging efficiency, and this trade-off may shape predator foraging strategies in natural environments.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8906 ◽  
Author(s):  
Leigh G. Torres ◽  
Dawn R. Barlow ◽  
Todd E. Chandler ◽  
Jonathan D. Burnett

To understand how predators optimize foraging strategies, extensive knowledge of predator behavior and prey distribution is needed. Blue whales employ an energetically demanding lunge feeding method that requires the whales to selectively feed where energetic gain exceeds energetic loss, while also balancing oxygen consumption, breath holding capacity, and surface recuperation time. Hence, blue whale foraging behavior is primarily driven by krill patch density and depth, but many studies have not fully considered surface feeding as a significant foraging strategy in energetic models. We collected predator and prey data on a blue whale (Balaenoptera musculus brevicauda) foraging ground in New Zealand in February 2017 to assess the distributional and behavioral response of blue whales to the distribution and density of krill prey aggregations. Krill density across the study region was greater toward the surface (upper 20 m), and blue whales were encountered where prey was relatively shallow and more dense. This relationship was particularly evident where foraging and surface lunge feeding were observed. Furthermore, New Zealand blue whales also had relatively short dive times (2.83 ± 0.27 SE min) as compared to other blue whale populations, which became even shorter at foraging sightings and where surface lunge feeding was observed. Using an unmanned aerial system (UAS; drone) we also captured unique video of a New Zealand blue whale’s surface feeding behavior on well-illuminated krill patches. Video analysis illustrates the whale’s potential use of vision to target prey, make foraging decisions, and orient body mechanics relative to prey patch characteristics. Kinematic analysis of a surface lunge feeding event revealed biomechanical coordination through speed, acceleration, head inclination, roll, and distance from krill patch to maximize prey engulfment. We compared these lunge kinematics to data previously reported from tagged blue whale lunges at depth to demonstrate strong similarities, and provide rare measurements of gape size, and krill response distance and time. These findings elucidate the predator-prey relationship between blue whales and krill, and provide support for the hypothesis that surface feeding by New Zealand blue whales is an important component to their foraging ecology used to optimize their energetic efficiency. Understanding how blue whales make foraging decisions presents logistical challenges, which may cause incomplete sampling and biased ecological knowledge if portions of their foraging behavior are undocumented. We conclude that surface foraging could be an important strategy for blue whales, and integration of UAS with tag-based studies may expand our understanding of their foraging ecology by examining surface feeding events in conjunction with behaviors at depth.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120986 ◽  
Author(s):  
Jeremy A. Goldbogen ◽  
John Calambokidis ◽  
Ari S. Friedlaender ◽  
John Francis ◽  
Stacy L. DeRuiter ◽  
...  

The extreme body size of blue whales requires a high energy intake and therefore demands efficient foraging strategies. As an obligate lunge feeder on aggregations of small zooplankton, blue whales engulf a large volume of prey-laden water in a single, rapid gulp. The efficiency of this feeding mechanism is strongly dependent on the amount of prey that can be captured during each lunge, yet food resources tend to be patchily distributed in both space and time. Here, we measured the three-dimensional kinematics and foraging behaviour of blue whales feeding on krill, using suction-cup attached multi-sensor tags. Our analyses revealed 360° rolling lunge-feeding manoeuvres that reorient the body and position the lower jaws so that a krill patch can be engulfed with the whale's body inverted. We also recorded these rolling behaviours when whales were in a searching mode in between lunges, suggesting that this behaviour also enables the whale to visually process the prey field and maximize foraging efficiency by surveying for the densest prey aggregations. These results reveal the complex manoeuvrability that is required for large rorqual whales to exploit prey patches and highlight the need to fully understand the three-dimensional interactions between predator and prey in the natural environment.


2018 ◽  
Vol 75 (12) ◽  
pp. 2343-2353 ◽  
Author(s):  
Ingeborg M. Mulder ◽  
Corey J. Morris ◽  
J. Brian Dempson ◽  
Ian A. Fleming ◽  
Michael Power

Anadromous Arctic char (Salvelinus alpinus) migrate back to fresh water in late summer to spawn and (or) overwinter. Upon freshwater entry, feeding is reduced or absent, and movement activity is restricted. While the physiological responses to low temperatures (e.g., growth, metabolism) are understood, specifics of the use of thermal habitat for overwintering remains poorly characterized. This study used acoustic and archival telemetry data from two lakes in southern Labrador, Canada, to study thermal habitat use during the ice-covered period. Results showed that lake-dwelling anadromous Arctic char predominantly occupied a narrow range of temperatures (0.5–2 °C) and used cooler temperatures available within the middle and upper water column. Use of the selected temperatures is likely a strategy that lowers metabolic costs and minimizes energy expenditure, preserving stored lipids for overwinter survival and the energetic costs of preparation for seaward migration. As Arctic char are visual feeders, use of the upper water column is also thought to aid foraging efficiency by increasing the likelihood of prey capture.


1980 ◽  
Vol 58 (9) ◽  
pp. 1564-1574 ◽  
Author(s):  
J. P. Myers ◽  
S. L. Williams ◽  
F. A. Pitelka

We investigated the role of prey size, prey depth, prey microdistribution, and substrate penetrability in affecting prey availability to sanderlings (Calidris alba Pallas). Five experiments were performed in the laboratory manipulating these availability factors and prey density in beach sand. The effects on prey risk and sanderling prey capture rate were measured.Prey risk increased linearly with prey size. Prey within 10 mm of the surface were vulnerable to predation but their risk decreased sharply below that depth. Substrate penetrability affected prey risk by controlling how deeply a sanderling could probe beneath the sand surface while searching for prey.Prey capture rates varied between 0.01 and 0.84 captures per second of search time over a range of prey density between 60 and 1200 prey per square metre. Prey size and substrate penetrability affected capture rate through their effect on prey risk, and substrate penetrability also influenced capture rate directly. Prey density had the strongest effect on prey capture rate. Measurements in the field around Bodega Bay, California, indicate that prey density, prey size, prey depth, and substrate penetrability can have significant impact on sanderling foraging under field conditions.


2018 ◽  
Vol 5 (1) ◽  
pp. 170925 ◽  
Author(s):  
Catherine R. M. Attard ◽  
Luciano B. Beheregaray ◽  
Jonathan Sandoval-Castillo ◽  
K. Curt S. Jenner ◽  
Peter C. Gill ◽  
...  

Genetic datasets of tens of markers have been superseded through next-generation sequencing technology with genome-wide datasets of thousands of markers. Genomic datasets improve our power to detect low population structure and identify adaptive divergence. The increased population-level knowledge can inform the conservation management of endangered species, such as the blue whale ( Balaenoptera musculus ). In Australia, there are two known feeding aggregations of the pygmy blue whale ( B. m. brevicauda ) which have shown no evidence of genetic structure based on a small dataset of 10 microsatellites and mtDNA. Here, we develop and implement a high-resolution dataset of 8294 genome-wide filtered single nucleotide polymorphisms, the first of its kind for blue whales. We use these data to assess whether the Australian feeding aggregations constitute one population and to test for the first time whether there is adaptive divergence between the feeding aggregations. We found no evidence of neutral population structure and negligible evidence of adaptive divergence. We propose that individuals likely travel widely between feeding areas and to breeding areas, which would require them to be adapted to a wide range of environmental conditions. This has important implications for their conservation as this blue whale population is likely vulnerable to a range of anthropogenic threats both off Australia and elsewhere.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141158 ◽  
Author(s):  
Kun Zhao ◽  
Raja Jurdak ◽  
Jiajun Liu ◽  
David Westcott ◽  
Branislav Kusy ◽  
...  

We present a simple model to study Lévy-flight foraging with a power-law step-size distribution in a finite landscape with countable targets. We find that different optimal foraging strategies characterized by a wide range of power-law exponent μ opt , from ballistic motion ( μ opt → 1) to Lévy flight (1 < μ opt < 3) to Brownian motion ( μ opt ≥ 3), may arise in adaptation to the interplay between the termination of foraging, which is regulated by the number of foraging steps, and the environmental context of the landscape, namely the landscape size and number of targets. We further demonstrate that stochastic returning can be another significant factor that affects the foraging efficiency and optimality of foraging strategy. Our study provides a new perspective on Lévy-flight foraging, opens new avenues for investigating the interaction between foraging dynamics and the environment and offers a realistic framework for analysing animal movement patterns from empirical data.


Paleobiology ◽  
1979 ◽  
Vol 5 (2) ◽  
pp. 107-125 ◽  
Author(s):  
Jennifer A. Kitchell

The foraging paradigm of trace fossil theory has historically accorded random behavior to non-food-limited deposit-feeders and non-random behavior to food-limited feeders. A series of randomness measures derived from empirical modeling, simulation modeling, stochastic modeling and probability theory applied to foraging patterns observed in deep-sea bottom photographs from the Arctic and Antarctic yielded a behavioral continuum of increasing non-randomness. A linear regression of trace positions along the continuum to bathymetric data did not substantiate the optimal foraging efficiency-depth dependence model of trace fossil theory, except that all traces exhibited a greater optimization than that of simulated random foraging. It is hypothesized that optimization as evidenced by non-random foraging strategies represents maximization of the cost/benefit ratio of resource exploitation to risk of predation and that individual foraging patterns reflect an exploration response to the morphometry of a patchily distributed food resource. Differential predation and competition may account for the co-occurrence of random and non-random strategies within the same bathymetric zone.


Behaviour ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 563-581 ◽  
Author(s):  
Heidi C. Pearson

The prevalence of leaping across delphinids indicates it has an adaptive benefit. I examined leaping behaviour in dusky dolphins (Lagenorhynchus obscurus) according to signalling, social facilitation, and prey capture hypotheses. I quantified the effect of leaping on group behaviour and fission-fusion and the behavioural context of leaping. I observed dolphins in Admiralty Bay, New Zealand during 171 focal follows totalling 157 h. Data were analysed using generalized estimating equations. Clean leaping had a positive effect on party fission () and foraging behaviour (). Coordinated leaping caused a short-term wane in foraging behaviour () and had a positive effect on party fusion (). Noisy leaping had a negative effect on perpetuating resting and traveling cessation (both ). The signalling hypothesis was the most strongly supported. The social facilitation and prey capture hypotheses were moderately supported. Leaping may provide adaptive benefits such as reduced scramble competition, increased foraging efficiency, and social bonding.


Behaviour ◽  
2010 ◽  
Vol 147 (8) ◽  
pp. 933-951 ◽  
Author(s):  

AbstractForaging efficiency of predators can be evaluated by using optimality or profitability models which incorporate prey choice, handling time and pursuit or search time. Optimality of a diet could vary based on the age, sex, size, predation risk, or foraging experience of the predator. This study tested the effects of a predator's age and foraging experience by observing prey capture attempts and success rate, and by calculating diet profitability for adult and neonate Sceloporus jarrovii and adult Sceloporus virgatus. Prey availability was assessed in order to determine prey preference and profitability. Neonates showed an increased number of prey capture attempts, but success rate was similar for neonates and adults of both species. Total diet profitability of neonates was lower than adults of either species, which could be a result of poor prey choice or gape limitation (although body size showed no direct effect). Overall, the diets of all three groups were less profitable than would be expected based on the types of prey in the environment, although this is likely due to low availability (from the lizard's perspective) of highly profitable items. Lizards seem to be eating prey items in the same proportion as they are found in the environment.


Sign in / Sign up

Export Citation Format

Share Document