scholarly journals A dietary phytochemical alters caste-associated gene expression in honey bees

2015 ◽  
Vol 1 (7) ◽  
pp. e1500795 ◽  
Author(s):  
Wenfu Mao ◽  
Mary A. Schuler ◽  
May R. Berenbaum

In the eusocial honey bee Apis mellifera, with reproductive queens and sterile workers, a female larva’s developmental fate depends on its diet; nurse bees feed queen-destined larvae exclusively royal jelly, a glandular secretion, but worker-destined larvae receive royal jelly for 3 days and subsequently jelly to which honey and beebread are added. RNA-Seq analysis demonstrated that p-coumaric acid, which is ubiquitous in honey and beebread, differentially regulates genes involved in caste determination. Rearing larvae in vitro on a royal jelly diet to which p-coumaric acid has been added produces adults with reduced ovary development. Thus, consuming royal jelly exclusively not only enriches the diet of queen-destined larvae but also may protect them from inhibitory effects of phytochemicals present in the honey and beebread fed to worker-destined larvae.

2021 ◽  
pp. jeb.231076
Author(s):  
Gyan Harwood ◽  
Heli Salmela ◽  
Dalial Freitak ◽  
Gro Amdam

Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs where they are recognized by the embryo's immune system and induce higher pathogen-resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses’ jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels an antimicrobial peptide found in royal jelly, defensin-1.


1999 ◽  
Vol 131 (5) ◽  
pp. 695-706 ◽  
Author(s):  
Huarong Lin ◽  
Mark L. Winston ◽  
Norbert H. Haunerland ◽  
Keith N. Slessor

AbstractWe examined the factors that might influence ovary development in worker honey bees, Apis mellifera L. Queenless workers at different ages (≤ 12 h, and 4, 8, and 21 d) were tested in cages for ovarian development. Newly emerged, 4- and 8-d-old, and 21-d-old workers had medium-, large-, and small-sized ovaries, respectively, suggesting that of the worker ages tested only 4- and 8-d-old workers are likely to become egg layers in a queenless colony. Also, we compared ovarian development of newly emerged workers that were caged for 14 d and allowed to consume either pollen or royal jelly to that of another group of workers similarly caged but screened so that they could only obtain food via trophallaxis from young bees. Ovaries of newly emerged workers that received food from young bees were as well developed as those of newly emerged workers allowed to take pollen or royal jelly directly. Screened workers also had lower but still elevated vitellogenin levels compared with bees having direct access to food. These results indicate that nurse-age bees functioning as pollen-digesting units affect the ovarian development of other workers and to a lesser extent vitellogenesis via food exchange. We compared the influence of group sizes of 25, 125, and 600 bees per cage on ovarian development for 14 d. The two groups of 25 and 125 bees had similar mean ovary scores, and higher scores than a group of 600 bees. Our findings suggest that nurse-age bees could play an important role in mediating worker fertility via trophallaxis, possibly by differentiating worker dominance status, and generally only young workers become fertile when a queen is lost in a colony. Vitellogenin is a more sensitive parameter to measure bee fertility, and might be a useful tool to further explore ovary development and egg laying in worker social insects. We recommend measuring haemolymph vitellogenin titres and (or) oocyte length of workers in a group of 25 bees per cage, supplied with 50% royal jelly in honey as a standard method to assess honey bee worker fertility in future experiments.


2020 ◽  
Vol 287 (1927) ◽  
pp. 20200614 ◽  
Author(s):  
Garett P. Slater ◽  
George D. Yocum ◽  
Julia H. Bowsher

In species that care for their young, provisioning has profound effects on offspring fitness. Provisioning is important in honeybees because nutritional cues determine whether a female becomes a reproductive queen or sterile worker. A qualitative difference between the larval diets of queens and workers is thought to drive this divergence; however, no single compound seems to be responsible. Diet quantity may have a role during honeybee caste determination yet has never been formally studied. Our goal was to determine the relative contributions of diet quantity and quality to queen development. Larvae were reared in vitro on nine diets varying in the amount of royal jelly and sugars, which were fed to larvae in eight different quantities. For the middle diet, an ad libitum quantity treatment was included. Once adults eclosed, the queenliness was determined using principal component analysis on seven morphological measurements. We found that larvae fed an ad libitum quantity of diet were indistinguishable from commercially reared queens, and that queenliness was independent of the proportion of protein and carbohydrate in the diet. Neither protein nor carbohydrate content had a significant influence on the first principle component 1 (PC1), which explained 64.4% of the difference between queens and workers. Instead, the total quantity of diet explained a significant amount of the variation in PC1. Large amounts of diet in the final instar were capable of inducing queen traits, contrary to the received wisdom that queen determination can only occur in the third instar. These results indicate that total diet quantity fed to larvae may regulate the difference between queen and worker castes in honeybees.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
YC Oh ◽  
YH Jeong ◽  
WK Cho ◽  
SJ Lee ◽  
JY Ma

1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


1963 ◽  
Vol 09 (01) ◽  
pp. 164-174 ◽  
Author(s):  
Albert R Pappenhagen ◽  
J. L Koppel ◽  
John H Olwin

SummaryData have been presented on the in vitro effects of human chylomicra, low-density human plasma lipoproteins, and partially purified preparations of various phospholipids on human plasma euglobulin lysis. Euglobulin lysis was found to be accelerated by preparations of mixed soybean phospholipids (aso-lectin), cephalin, phosphatidyl inositol, phophatidyl serine and phosphatidyl ethanolamine. In contrast, it was found to be inhibited by preparations of human chylomicra, low-density human plasma liproproteins and lecithin. Inhibition of euglobulin lysis produced by any of these three agents could be diminished or completely overcome by the simultaneous presence of suitable levels of any one of the accelerating agents. In all cases studied, both inhibitory and accelerating effects were observed to be concentration-dependent. Evidence has been obtained to suggest that in the case of the accelerating agents the observed increased rate of euglobulin lysis is not a direct effect on lysis itself, but rather is due to more complete precipitation of plasminogen in the presence of these substances. On the other hand, it appears that the inhibitory effects observed are not related to the extent of plasminogen precipitation, but are actually true inhibitions of euglobulin lysis. The possible clinical significance of some of these observations has been briefly discussed.


2010 ◽  
Vol 30 (2) ◽  
pp. 212-214
Author(s):  
Hong QIAN ◽  
Nong XIAO ◽  
Zhi-feng QIN ◽  
Yan-jun LIU ◽  
Yi-jun SHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document