scholarly journals Social Immunity in Honey Bees: Royal Jelly as a Vehicle in Transferring Bacterial Pathogen Fragments Between Nestmates

2021 ◽  
pp. jeb.231076
Author(s):  
Gyan Harwood ◽  
Heli Salmela ◽  
Dalial Freitak ◽  
Gro Amdam

Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs where they are recognized by the embryo's immune system and induce higher pathogen-resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses’ jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels an antimicrobial peptide found in royal jelly, defensin-1.

2015 ◽  
Vol 1 (7) ◽  
pp. e1500795 ◽  
Author(s):  
Wenfu Mao ◽  
Mary A. Schuler ◽  
May R. Berenbaum

In the eusocial honey bee Apis mellifera, with reproductive queens and sterile workers, a female larva’s developmental fate depends on its diet; nurse bees feed queen-destined larvae exclusively royal jelly, a glandular secretion, but worker-destined larvae receive royal jelly for 3 days and subsequently jelly to which honey and beebread are added. RNA-Seq analysis demonstrated that p-coumaric acid, which is ubiquitous in honey and beebread, differentially regulates genes involved in caste determination. Rearing larvae in vitro on a royal jelly diet to which p-coumaric acid has been added produces adults with reduced ovary development. Thus, consuming royal jelly exclusively not only enriches the diet of queen-destined larvae but also may protect them from inhibitory effects of phytochemicals present in the honey and beebread fed to worker-destined larvae.


2018 ◽  
Author(s):  
Eyal Maori ◽  
Yael Garbian ◽  
Vered Kunik ◽  
Rita Mozes-Koch ◽  
Osnat Malka ◽  
...  

ABSTRACTOne of the characteristics of RNA interference (RNAi) is systemic spread of the silencing signal among cells and tissues throughout the organism. Systemic RNAi, initiated by double-stranded RNA (dsRNA) ingestion, has been reported in diverse invertebrates, including honey bees, demonstrating environmental RNA uptake that undermines homologous gene expression. However, the question why any organism would take up RNA from the environment has remained largely unanswered. Here, we report on horizontal RNA flow among honey bees mediated by secretion and ingestion of worker and royal jelly diets. We show that ingested dsRNA spreads through the bee’s hemolymph associated with a protein complex. The systemic dsRNA is secreted with the jelly and delivered to larvae via ingestion. Furthermore, we demonstrate that transmission of jelly-secreted dsRNA to larvae is biologically active and triggers gene knockdown that lasts into adulthood. Finally, RNA extracted from worker and royal jellies harbor differential naturally occurring RNA populations. Some of these RNAs corresponded to honey bee protein coding genes, transposable elements, non-coding RNA as well as bacteria, fungi and viruses. These results reveal an inherent property of honey bees to share RNA among individuals and generations. Thus, our findings suggest a transmissible RNA pathway, playing a role in social immunity and epigenetic signaling between honey bees and potentially among other closely interacting organisms.SIGNIFICANCEHoney bees are eusocial insects, living in a colony that is often described as a superorganism. RNA mobility among cells of an organism has been documented in plants and animals. Here we show that RNA spreads further in honey bees, and is horizontally transferred between individuals and across generations. We found that honey bees share biologically active RNA through secretion and ingestion of worker and royal jellies. Such RNA initiates RNA interference, which is a known defense mechanism against viral infection. Furthermore, we characterized diverse RNA profiles of worker and royal jelly, including fragmented viral RNA. Our findings demonstrate a transmissible RNA pathway with potential roles in social immunity and epigenetic signaling among members of the hive.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 832-838
Author(s):  
Roshna Sukheoji Bhutada ◽  
Renu Rathi ◽  
Devyani Dasar

WHO declared Covid 19 /SARS -COV-2 as a global pandemic.Till date, there is no medicine for COVID-19. If the Infection arises in the body then the defence mechanism activated against infection. A recent study suggests that temporarily augmenting the body's immune system in the early stages of COVID-19 can help patient to avoid severe symptoms as it is rightly said prevention is better than cure. Ayurveda approaches to develop physiological reactions to facilitate immunity. Planning of diet is most important to boost immunity.As per many researches to provide supplementary food which contains Zinc, Vitamin C,Vitamin D and immunity boosting foodsuch as citrus natural products, custard apple, apple, papaya is among the Fruits. Vegetables include broccoli, onion, garlic and green leafy vegetables. Nuts, ginger, turmeric, pepper, egg yolk, shellfish, mushroom. The need of the hour is a quick boost to immune system to keep it fit, fighting. One should get the right amount of nutrients from the diet, supplementation regimen to boost immune system.In this review, there are few common supplements and super food studies have been included. It might be a torch bearer as sample menu and their alternatives are given for a normal adult. Needy may change contemplated according to age, sex, body mass index and daily physical activities.


2016 ◽  
Vol 60 (2) ◽  
pp. 119-128
Author(s):  
Georgios Goras ◽  
Chrysoula Tananaki ◽  
Sofia Gounari ◽  
Elissavet Lazaridou ◽  
Dimitrios Kanelis ◽  
...  

Abstract We investigated the rearing of drone larvae grafted in queen cells. From the 1200 drone larvae that were grafted during spring and autumn, 875 were accepted (72.9%) and reared as queens. Drone larvae in false queen cells received royal jelly of the same composition and of the same amounts as queen larvae. Workers capped the queen cells as if they were drones, 9-10 days after the egg laying. Out of 60 accepted false queen cells, 21 (35%) were capped. The shape of false queen cells with drone larvae is unusually long with a characteristically elongate tip which is probably due to the falling of larvae. Bees start the destruction of the cells when the larvae were 3 days old and maximised it before and after capping. Protecting false queen cells in the colony by wrapping, reversing them upside down, or placing in a horizontal position, did not help. The only adult drones that emerged from the false queen cells were those protected in an incubator and in push-in cages. Adult drones from false queen cells had smaller wings, legs, and proboscis than regular drones. The results of this study verify previous reports that the bees do not recognise the different sex of the larvae at least at the early stage of larval development. The late destruction of false queen cells, the similarity in quality and quantity of the produced royal jelly, and the bigger drone cells, allow for the use of drone larvae in cups for the production of royal jelly.


2017 ◽  
Vol 284 (1869) ◽  
pp. 20171583 ◽  
Author(s):  
Imroze Khan ◽  
Arun Prakash ◽  
Deepa Agashe

Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiling Fang ◽  
Yangnan Gu

Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.


Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 122 ◽  
Author(s):  
Paul Winkler ◽  
Frank Sieg ◽  
Anja Buttstedt

One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 528
Author(s):  
Michael Goblirsch ◽  
Jenny F. Warner ◽  
Brooke A. Sommerfeldt ◽  
Marla Spivak

Honey bees use several strategies to protect themselves and the colony from parasites and pathogens. In addition to individual immunity, social immunity involves the cumulative effort of some individuals to limit the spread of parasites and pathogens to uninfected nestmates. Examples of social immunity in honey bees that have received attention include hygienic behavior, or the removal of diseased brood, and the collection and deposition of antimicrobial resins (propolis) on interior nest surfaces. Advances in our understanding of another form of social immunity, social fever, are lacking. Honey bees were shown to raise the temperature of the nest in response to temperature-sensitive brood pathogen, Ascosphaera apis. The increase in nest temperature (−0.6 °C) is thought to limit the spread of A. apis infection to uninfected immatures. We established observation hives and monitored the temperature of the brood nest for 40 days. This observation period was broken into five distinct segments, corresponding to sucrose solution feedings—Pre-Feed, Feed I, Challenge, Feed II, and Post-Feed. Ascosphaera apis was administered to colonies as a 1% solution of ground sporulating chalkbrood mummies in 50% v/v sucrose solution, during the Challenge period. Like previous reports, we observed a modest increase in brood nest temperature during the Challenge period. However, all hives presented signs of chalkbrood disease, suggesting that elevation of the nest temperature was not sufficient to stop the spread of infection among immatures. We also began to explore the molecular mechanisms of temperature increase by exposing adult bees in cages to A. apis, without the presence of immatures. Compared to adult workers who were given sucrose solution only, workers exposed to A. apis showed increased expression of the antimicrobial peptides abaecin (p = 0.07) and hymenoptaecin (p = 0.04), but expression of the heat shock response protein Hsp 70Ab-like (p = 0.76) and the nutritional marker vitellogenin (p = 0.72) were unaffected. These results indicate that adult honey bee workers exposed to a brood pathogen elevate the temperature of the brood nest and initiate an immune response, but the effect of this fever on preventing disease requires further study.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3118 ◽  
Author(s):  
Wenchao Yang ◽  
Yuanyuan Tian ◽  
Mingfeng Han ◽  
Xiaoqing Miao

In the Western honey bee, Apis mellifera, queens and workers have different longevity although they share the same genome. Queens consume royal jelly (RJ) as the main food throughout their life, including as adults, but workers only eat worker jelly when they are larvae less than 3 days old. In order to explore the effect of RJ and the components affecting longevity of worker honey bees, we first determined the optimal dose for prolonging longevity of workers as 4% RJ in 50% sucrose solution, and developed a method of obtaining long lived workers. We then compared the effects of longevity extension by RJ 4% with bee-collected pollen from rapeseed (Brassica napus). Lastly, we determined that a water soluble RJ protein obtained by precipitation with 60% ammonium sulfate (RJP60) contained the main component for longevity extension after comparing the effects of RJ crude protein extract (RJCP), RJP30 (obtained by precipitation with 30% ammonium sulfate), and RJ ethanol extract (RJEE). Understanding what regulates worker longevity has potential to help increase colony productivity and improve crop pollination efficiency.


Sign in / Sign up

Export Citation Format

Share Document