scholarly journals Shape of a slowly rotating star measured by asteroseismology

2016 ◽  
Vol 2 (11) ◽  
pp. e1601777 ◽  
Author(s):  
Laurent Gizon ◽  
Takashi Sekii ◽  
Masao Takata ◽  
Donald W. Kurtz ◽  
Hiromoto Shibahashi ◽  
...  

Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the star’s shape of ΔR/R = (1.8 ± 0.6) × 10−6. For a stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is ΔR = 3 ± 1 km. Because the observed ΔR/R is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field.

2013 ◽  
Vol 9 (S302) ◽  
pp. 363-364 ◽  
Author(s):  
Ana Palacios ◽  
Allan Sacha Brun

AbstractWe present preliminary results of a 3D MHD simulation of the convective envelope of the giant star Pollux for which the rotation period and the magnetic field intensity have been measured from spectroscopic and spectropolarimetric observations. This giant is one of the first single giants with a detected magnetic field, and the one with the weakest field so far. Our aim is to understand the development and the action of the dynamo in its extended convective envelope.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Bin Zhou ◽  
Bingjun Cheng ◽  
Xiaochen Gou ◽  
Lei Li ◽  
Yiteng Zhang ◽  
...  

Abstract The High Precision Magnetometer (HPM) is one of the main payloads onboard the China Seismo-Electromagnetic Satellite (CSES). The HPM consists of two Fluxgate Magnetometers (FGM) and the Coupled Dark State Magnetometer (CDSM), and measures the magnetic field from DC to 15 Hz. The FGMs measure the vector components of the magnetic field; while the CDSM detects the magnitude of the magnetic field with higher accuracy, which can be used to calibrate the linear parameters of the FGM. In this paper, brief descriptions of measurement principles and performances of the HPM, ground, and in-orbit calibration results of the FGMs are presented, including the thermal drift and magnetic interferences from the satellite. The HPM in-orbit vector data calibration includes two steps: sensor non-linearity corrections based on on-ground calibration and fluxgate linear parameter calibration based on the CDSM measurements. The calibration results show a reasonably good stability of the linear parameters over time. The difference between the field magnitude calculated from the calibrated FGM components and the magnitude directly measured by the CDSM is just 0.5 nT (1σ) when the linear parameters are fitted separately for the day- and the night-side. Satellite disturbances have been analyzed including soft and hard remanence as well as magnetization of the magnetic torquer, radiation from the Tri-Band Beacon, and interferences from the rotation of the solar wing. A comparison shows consistency between the HPM and SWARM magnetic field data. Observation examples are introduced in the paper, which show that HPM data can be used to survey the global geomagnetic field and monitor the magnetic field disturbances in the ionosphere.


1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2016 ◽  
Vol 62 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Lotfi Mhamdi ◽  
Nejib Mhamdi ◽  
Naceur Mhamdi ◽  
Philippe Lejeune ◽  
Nicole Jaffrezic ◽  
...  

This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.


2021 ◽  
Vol 44 ◽  
pp. 92-95
Author(s):  
A.I. Podgorny ◽  
◽  
I.M. Podgorny ◽  
A.V. Borisenko ◽  
N.S. Meshalkina ◽  
...  

Primordial release of solar flare energy high in corona (at altitudes 1/40 - 1/20 of the solar radius) is explained by release of the magnetic energy of the current sheet. The observed manifestations of the flare are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. To study the flare mechanism is necessary to perform MHD simulations above a real active region (AR). MHD simulation in the solar corona in the real scale of time can only be carried out thanks to parallel calculations using CUDA technology. Methods have been developed for stabilizing numerical instabilities that arise near the boundary of the computational domain. Methods are applicable for low viscosities in the main part of the domain, for which the flare energy is effectively accumulated near the singularities of the magnetic field. Singular lines of the magnetic field, near which the field can have a rather complex configuration, coincide or are located near the observed positions of the flare.


2000 ◽  
Vol 175 ◽  
pp. 324-329 ◽  
Author(s):  
H.F. Henrichs ◽  
J.A. de Jong ◽  
J.-F. Donati ◽  
C. Catala ◽  
G.A. Wade ◽  
...  

AbstractNew circular spectropolarimetric observations of the B1 IIIe star β Cep (υsini = 25 km s−1) show a sinusoidally varying weak longitudinal magnetic field (~ 200 G peak-to-peak). The period corresponds to the 12 day period in the stellar wind variations observed in ultraviolet spectral lines. Maximum field occurs at maximum emission in the UV wind lines. This gives compelling evidence for a magnetic-rotator model for this star, with an unambiguous rotation period of 12 days.The similarity between the Hα emission phases in β Cep and in Be stars suggests that the origin of the Be phenomenon does not have to be rapid rotation: we propose that in β Cep the velocity to bring material in (Keplerian) orbit is provided by the high corotation velocity at the Alfvén radius (~10 R*), whereas in Be stars this is done by the rapid rotation of the surface. In both cases the cause of the emission phases has still to be found. Weak temporary magnetic fields remain the strongest candidate.A full paper, with results including additional measurements in June and July 1999, will appear in A & A.


1974 ◽  
Vol 59 ◽  
pp. 177-177
Author(s):  
R. J. Tayler

It has been shown (Markey and Tayler, 1973; Tayler, 1973; Wright, 1973) that a wide range of simple magnetic field configurations in stars are unstable. Although the ultimate effect of the instabilities is unclear, it seems likely that they would lead to enhanced destruction of magnetic flux, so that magnetic field decay would be much more rapid than previously supposed. Instability is almost certain in a non-rotating star containing either a purely toroidal field or a purely poloidal field, which has closed field lines inside the star. In both cases the instability resembles the well known instabilities of cylindrical and toroidal current channels, modified by the constraint that motion must be almost entirely along surfaces of constant gravitational potential.If both toroidal and poloidal fields are present, the problem is more complicated. In a toroidal plasma with a helical field, the worst instabilities are also helical but it is impossible for a helical disturbance to be parallel to a surface of constant gravitational potential everywhere. As a result, the admixture of toroidal and poloidal fields has a stabilizing influence, but it is not at present clear whether the majority of such configurations are completely stable.The effect of rotation has not yet been studied but it will certainly be important if the rotation period is less than the time taken for an Alfvén wave to cross the region of interest. This is true in most stars unless the internal magnetic field is very much stronger than any observed field.


1976 ◽  
Vol 71 ◽  
pp. 323-344 ◽  
Author(s):  
K.-H. Rädler

One of the most striking features of both the magnetic field and the motions observed at the Sun is their highly irregular or random character which indicates the presence of rather complicated magnetohydrodynamic processes. Of great importance in this context is a comprehension of the behaviour of the large scale components of the magnetic field; large scales are understood here as length scales in the order of the solar radius and time scales of a few years. Since there is a strong relationship between these components and the solar 22-years cycle, an insight into the mechanism controlling these components also provides for an insight into the mechanism of the cycle. The large scale components of the magnetic field are determined not only by their interaction with the large scale components of motion. On the contrary, a very important part is played also by an interaction between the large and the small scale components of magnetic field and motion so that a very complicated situation has to be considered.


Sign in / Sign up

Export Citation Format

Share Document