Concentration of gold during retrograde metamorphism of Archean banded iron formations, Slave Province, Canada

1993 ◽  
Vol 30 (8) ◽  
pp. 1566-1581 ◽  
Author(s):  
R. Craig Ford ◽  
Norman A. Duke

Gold-bearing iron formations are widely distributed within extensive metasedimentary terranes of the Archean Slave Province, situated in the northwestern Canadian Precambrian Shield. Mineralized iron formations occur within thick turbidite sequences overprinted by a protracted history of deformation, metamorphism, and plutonism. Economically significant gold prospects are specifically sited at structural culminations characterized by polyphase folding. Based on garnet–biotite geothermometry on the stable prograde metamorphic assemblage of enveloping metapelites, peak metamorphic conditions are approximated to be 570 °C and 4 kbar (1 kbar = 100 MPa). Diagnostic prograde mineralogy reveals that two facies of silicate iron formation are represented at the five gold occurrences investigated: (1) amphibolitic iron formation (AIF), characterized by quartz + grunerite + hornblende + pyrrhotite ± garnet ± graphite + ilmenite, and (2) pelitic iron formation (PIF), consisting of quartz + biotite + garnet + ilmenite ± grunerite ± hornblende. Textures reveal that grunerite crystallization preceded hornblende and garnet. Within AIF, banded pyrrhotite is in textural equilibrium with prograde metamorphic minerals. Retrograde hornblende, garnet, zoisite, apatite, carbonate, ferroactinolite, and gold-bearing sulphide minerals replace the prograde mineral assemblages on the margins of quartz veins that intensify at AIF fold hinges.It is hypothesized that the iron-formation-hosted gold deposits of the Slave Province are a result of multistage processes. Gold concentrated at high background levels within pyrrhotite-bearing AIF was remobilized during fluid migration into brittle AIF fold hinges in subsequent metamorphic and deformational events. Metamorphic fluid, ponded in fractured AIF hinge domains, caused retrogressive replacement, quartz veining, and gold-bearing sulphide precipitation during waning temperature. Although the mineralized hinge zones commonly display evidence of late chloritization, this alteration did not further affect gold distribution. The gold precipitated with destabilization of thio complexes due to sulphidation prior to low-temperature hydrothermal activity.

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Xiaoxue Tong ◽  
Kaarel Mänd ◽  
Yuhao Li ◽  
Lianchang Zhang ◽  
Zidong Peng ◽  
...  

Banded iron formations (BIFs) are enigmatic chemical sedimentary rocks that chronicle the geochemical and microbial cycling of iron and carbon in the Precambrian. However, the formation pathways of Fe carbonate, namely siderite, remain disputed. Here, we provide photomicrographs, Fe, C and O isotope of siderite, and organic C isotope of the whole rock from the ~2.52 Ga Dagushan BIF in the Anshan area, China, to discuss the origin of siderite. There are small magnetite grains that occur as inclusions within siderite, suggesting a diagenetic origin of the siderite. Moreover, the siderites have a wide range of iron isotope compositions (δ56FeSd) from −0.180‰ to +0.463‰, and a relatively negative C isotope composition (δ13CSd = −6.20‰ to −1.57‰). These results are compatible with the reduction of an Fe(III)-oxyhydroxide precursor to dissolved Fe(II) through microbial dissimilatory iron reduction (DIR) during early diagenesis. Partial reduction of the precursor and possible mixing with seawater Fe(II) could explain the presence of siderite with negative δ56Fe, while sustained reaction of residual Fe(III)-oxyhydroxide could have produced siderite with positive δ56Fe values. Bicarbonate derived from both DIR and seawater may have provided a C source for siderite formation. Our results suggest that microbial respiration played an important role in the formation of siderite in the late Archean Dagushan BIF.


1989 ◽  
Vol 20 (2) ◽  
pp. 113
Author(s):  
L.G.B.T. Polomé

Most of the gold deposits in the Barberton Greenstone belt of South Africa are relatively small and in structurally complex geological areas.The mise-a-la-masse electrical technique, where a current electrode is earthed in a mineralised zone, was used on one of our exploration projects consisting of a sulphides/gold-bearing carbonaceous banded iron formation within a succession of mafic, ultramafic and sedimentary rocks. The technique was successful in delineating individual mineralised units within a broad lithological sequence. During the survey, electrical potential measurements were recorded on surface, in underground drives and in twenty five boreholes. Measurements were also repeated by earthing the mineralised zone in a number of boreholes. Major discontinuities were recognised within the ore zones and used to interpret geological structures. These were then used to define specific units for ore reserve calculations and the application of selected mining techniques.


2019 ◽  
Vol 5 (11) ◽  
pp. eaav2869 ◽  
Author(s):  
Katharine J. Thompson ◽  
Paul A. Kenward ◽  
Kohen W. Bauer ◽  
Tyler Warchola ◽  
Tina Gauger ◽  
...  

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis—photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth’s climate under a dim early Sun.


2020 ◽  
Author(s):  
Gabriella Fazio ◽  
Elder Yokoyama ◽  
Lucieth Cruz ◽  
Guilherme Trigilio

<p>The iron biogeochemical cycle is redox-sensitive and, therefore, can be linked to the major variations on the atmospheric and ocean compositions over the Earth’s evolution. Regarding the two main increases in the oxygen levels during the Precambrian, the Great and the Neoproterozoic Oxidation Events, both are related to paleogeographic, paleoenvironmetal and biochemical changes, linked also to global glaciations. These paleoclimatic variations caused disturbances in the iron cycle, which reacted by depositing paleoclimatic archives as banded iron formations (BIF). Investigations on the iron cycle can shed a light on the responses of the ocean redox state and the iron reservoir through these atmospheric variations. Thus, the analyses of the iron isotopic composition in the BIFs are a fundamental tool for these studies. It is essential to considerate the associated isotopic fractionation processes and uncertainties during the interpretation of these data. To this extend, many authors address the possibility of the impact of post-depositional processes in the primary signature of iron isotopic values, such as diagenesis, metamorphism and weathering. In all these scenarios and along the depositional process, the metabolic activity of planktonic bacteria must be considered as an active mechanism of isotopic fractioning. Therefore, the biologic enrolment in Fe (II) oxidation in a poor-O<sub>2</sub> atmosphere environment can help the understanding of BIF genesis during the major paleoclimatic events and its connection to life evolutionary leaps. In this study, we have performed a statistic evaluation of a bulk iron isotopic compilation from BIFs of different localities through the Precambrian, highlighting the Archean, the Paleoproterozoic and the Neoproterozoic. This evaluation was applied to ensure an iron isotopic anomaly, pointing towards an intense fractionation, found in the Neoproterozoic BIF of Banda Alta Formation (Jacadigo Group), located at Urucum district, West Brazil, bordering Bolivia. This formation is mainly composed of banded iron formations, interbedded with manganese facies, granular iron formation, diamictite and pelitic siliciclastic units. Its age constrains is in current debate, often linked to the Marinoan glaciation, whereas a recent biostratigraphic study indicates connection to the Sturtian glaciation. One of the main goals of this research is the evaluation of the uncertainty of primary isotopic signature regarding the impacts of post-depositional processes. To this extent, we have performed a detailed diagenetic characterization using clay mineralogy on stratigraphic cores establishing the diagenetic-low metamorphic stage in which these BIFs where submitted to. Moreover, in order to interpret the iron isotopic anomalous values, this research aimed the recognition of biogenic contribution in the BIF genesis. For this purpose, magnetic measures, such as low temperature magnetic measurements and standard bulk rock magnetism analyses, were performed to understand the minerology of the iron oxide phases and their genesis, in particular the attempt to identify biogenic magnetite proxies. In conclusion, a multiproxy approach was used targeting the understanding of the observed iron isotopic anomaly in the BIF of Urucum district.</p>


Author(s):  
Mohamed Samuel Moriah Conté ◽  
Abdellah Boushaba ◽  
Ali Moukadiri

The Nimba Range and its western extension are located in the Nimba region on the borders of the Republic of Guinea, Liberia and Côte d'Ivoire. It is a mountainous region made up of metavolcanic and metasedimentary rocks. Metavolcanic rocks are gneisses, granites, amphibolites and quartzites, which constitute the lower part of Archean age. The upper part consists of Proterozoic rocks of metasedimentary origin. It contains important deposits of itabirites which occupy the top of the mountains and hills of the region. The petrographic study of the banded iron formations reveals the existence of silicate banded iron formations (SIF) and oxidized banded iron formations (OIF). The results of the scanning electron microscope (SEM) and metallogenic analyzes show the presence of iron minerals (magnetites, hematites, pyrites, goethites, martites and siderites). These analyzes also reveal the presence of the metamorphic index minerals associated with the banded iron formations, hence the existence of several types of ferriferous formations (silicate (SIF) and oxidized (OIF) banded iron formations). Overall, there is an increase in the degree of regional metamorphism from east to west of the Nimba region. The geochemical analysis of the banded iron formations reveals that with the exception of Na2O, all the major elements have a negative linear correlation although dispersed with Fe2O3. This correlation is explained by a decrease in quartz, garnet, micas (muscovite and biotite), amphibole, pyroxene, plagioclase, titanium and phosphorus contents. Conversely, there is an increase in iron ore content: magnetites, pyrites, hematites, goethite. But the alkali content remains constant in these banded iron formations. Then, the lower the Fe2O3content, the higher the FeO content, while those of SiO2and Al2O3are constant in all of these formations in the Nimba region except in the chlorite banded iron formation where both are anticorelated. Finally, the ratio SiO2/ Fe2O3vs MgO + CaO + MnO / Fe2O3of the banded iron formations of the Nimba region compared to the same formations of the whole world allows to give them Proterozoic age. Some itabirites have high levels of magnetite, hematite, and goethite (same feature as itabirites of Lac supérieur and Pic de fon) and only chlorite itabirite has a low to medium Mg-Si-BIF content.


1993 ◽  
Vol 57 (388) ◽  
pp. 375-394 ◽  
Author(s):  
R. J. Goldfarb ◽  
L. W. Snee ◽  
W. J. Pickthorn

AbstractMesothermal, gold-bearing quartz veins are widespread within allochthonous terranes of Alaska that are composed dominantly of greenschist-facies metasedimentary rocks. The most productive lode deposits are concentrated in south-central and southeastern Alaska; small and generally nonproductive gold-bearing veins occur upstream from major placer deposits in interior and northern Alaska. Oreforming fluids in all areas are consistent with derivation from metamorphic devolatilisation reactions, and a close temporal relationship exists between high-T tectonic deformation, igneous activity, and gold mineralization. Ore fluids were of consistently low salinity, CO2-rich, and had δ18O values of 7‰- 12‰ and δD values between −15‰ and −35‰. Upper-crustal temperatures within the metamorphosed terranes reached at least 450-500°C before onset of significant gold-forming hydrothermal activity. Within interior and northern Alaska, latest Paleozoic through Early Cretaceous contractional deformation was characterised by obduction of oceanic crust, low-T/high-P metamorphism, and a lack of gold vein formation. Mid-Cretaceous veining occurred some 50-100 m.y. later, during a subsequent high-T metamorphic/magmatic event, possibly related to extension and uplift. In southern Alaska, gold deposits formed during latter stages of Tertiary, subduction-related, collisional orogenesis and were often temporally coeval with calc-alkaline magmatism.


2017 ◽  
Vol 17 (2) ◽  
pp. 303 ◽  
Author(s):  
Vitor Rodrigues Barrote ◽  
Carlos Alberto Rosiere ◽  
Vassily Khoury Rolim ◽  
João Orestes Schneider Santos ◽  
Neal Jesse Mcnaughton

The Guanhães banded iron formation (BIF) bearing succession occurs as tectonic slices, juxtaposed to Archean TTG granite-gneissic basement rock, developed during the Neoproterozoic-Cambrian Brasiliano collage. The succession has a maximum depositional age of ~2.18 Ga, from detrital zircons in quartzite, and consists of quartzites, schists, BIFs, gneiss and amphibolite, all metamorphosed under amphibolite facies conditions. The Guanhães BIF shows HREE enrichment and consistent positive Eu anomaly (PAAS-normalized REE+Y). Two types of contamination were observed in the samples. The first is contamination by an exotic detrital component, which resulted in low Y/Ho (<30) and Pr/Yb (SN) ratios. Evidence of such contamination, combined with inferred stratigraphic stacking data, indicates that the Guanhães BIFs were deposited on a shallow marine environment. The second type of contamination resulted in higher Eu-anomalies, positive Ce-anomalies, and higher REE+Y concentrations, possibly due to the interaction between later magmatic fluids and the Guanhães BIF. A strong Cambrian event is recorded in zircon age data. The uncontaminated samples display REE+Y distribution similar to other Precambrian BIFs, particularly those from the Morro-Escuro Sequence and the Serra da Serpentina Group, without true Ce-anomalies and Y/Ho close to seawater values (45). Geochronological and geochemical data presented in this paper strongly suggest a correlation between the Guanhães supracrustal succession and the Serra da Serpentina and Serra de São José Groups.


2006 ◽  
Vol 70 (5) ◽  
pp. 591-602 ◽  
Author(s):  
A. R. Cabral ◽  
B. Lehmann ◽  
H. F. Galbiatti ◽  
O. G. Rocha Filho

AbstractHematite is a mineral the chemical composition of which rarely differs significantly from stoichiometric Fe2O3. As such, little attention has been paid to the mineral chemistry of hematite in Precambrian iron formations, where hematite forms monomineralic high-grade orebodies. Electron microprobe analysis of hematite from two iron-ore deposits, Cauê (Itabira district) and Gongo Soco, in the Palaeoproterozoic Itabira Iron Formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, has revealed distinct variations in chemical composition with respect to Ti and Cr. Hematite containing Ti and/or Cr is of very local occurrence in the itabirite unit and shows a spatial relationship to hematitic, palladiferous gold-bearing veins (known as ‘jacutinga’), occurring either within the veins (adjacent to, or included in, palladiferous gold grains) or in their vicinity. Where present, titaniferous hematite (to ∼1.3 wt.% TiO2) is lepidoblastic and defines a pervasive tectonic foliation (S1). In contrast, Ti-free, chromiferous hematite (to ∼6.4 wt.% Cr2O3) characteristically occurs as inclusions in palladiferous gold within S1-truncating ‘jacutinga’. Replacement of granoblastic, Ti-free, chromiferous martite with relicts of magnetite by lepidoblastic, Cr-depleted, titaniferous hematite proves that Cr and Ti were mobile during metamorphism. Chromium was ultimately fractionated into the hematite found in auriferous aggregates within cross-cutting ‘jacutinga’. A positive correlation between Cr and Pt in bulk-rock samples from the Itabira district suggests that Cr is a potential prospective guide for Au-Pd-Pt-bearing hematitic veins (‘jacutinga’).


1986 ◽  
Vol 23 (4) ◽  
pp. 454-475 ◽  
Author(s):  
H. Helmstaedt ◽  
W. A. Padgham

Based on recent detailed mapping, a revised stratigraphic column is proposed for the rocks of the Archean Yellowknife Supergroup in the Yellowknife greenstone belt. The mafic volcanic rocks of the Kam Formation, previously thought to represent the oldest supracrustal rocks of the belt, overlap remnants of an earlier volcanic–sedimentary sequence, here referred to as the Octopus Formation. As its enormous thickness makes it too unwieldy to be described as a single formation, the Kam Formation is raised to group status and subdivided into four formations. It is proposed that the Kam Group should replace the Beaulieu Group in the Yellowknife area. The Chan Formation, at the base of the Kam Group, consists of multiple gabbroic intrusions that were emplaced into a carapace of pillowed flows. The intrusions locally resemble sheeted mafic dyke complexes in Phanerozoic ophiolites, thought to represent evidence for sea-floor spreading. The Crestaurum Formation, which overlies the Chan Formation, is characterized by massive and pillowed flows interlayered with a number of laterally continuous cherts and felsic tuffs. The Townsite Formation consists of rhyodacite breccias interbedded with felsic tuffs and pillowed dacites. The Yellowknife Bay Formation, at the top of the Kam Group and comprising massive and pillowed flows with pillow breccias and numerous interflow sediments, contains all the important gold deposits mined at Yellowknife. The Banting Formation, directly overlying the Kam Group and consisting of mafic to felsic volcanics, is also given group status and subdivided into two formations. Conglomerates and sandstones of the Jackson Lake Formation, formerly thought to separate the Kam and Banting groups, are considered to represent the youngest rocks of the Yellowknife Supergroup near Yellowknife. Gold-bearing shear zones clearly postdate deposition of the Banting Group, making the rocks of this group a potential target for gold exploration. The presence of remnants of a possible spreading center at the base of the Kam Group suggests that plate-tectonic processes were active during the formation of Archean supracrustal basins in the Slave Province.


Sign in / Sign up

Export Citation Format

Share Document