scholarly journals Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric

2019 ◽  
Vol 5 (4) ◽  
pp. eaav3780 ◽  
Author(s):  
Lu You ◽  
Yang Zhang ◽  
Shuang Zhou ◽  
Apoorva Chaturvedi ◽  
Samuel A. Morris ◽  
...  

Recent research on piezoelectric materials is predominantly devoted to enhancing the piezoelectric coefficient, but overlooks its sign, largely because almost all of them exhibit positive longitudinal piezoelectricity. The only experimentally known exception is ferroelectric polymer poly(vinylidene fluoride) and its copolymers, which condense via weak van der Waals (vdW) interaction and show negative piezoelectricity. Here we report quantitative determination of giant intrinsic negative longitudinal piezoelectricity and electrostriction in another class of vdW solids—two-dimensional (2D) layered ferroelectric CuInP2S6. With the help of single crystal x-ray crystallography and density-functional theory calculations, we unravel the atomistic origin of negative piezoelectricity in this system, which arises from the large displacive instability of Cu ions coupled with its reduced lattice dimensionality. Furthermore, the sizable piezoelectric response and negligible substrate clamping effect of the 2D vdW piezoelectric materials warrant their great potential in nanoscale, flexible electromechanical devices.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 644
Author(s):  
Linfang Xie ◽  
Guoliang Wang ◽  
Chao Jiang ◽  
Fapeng Yu ◽  
Xian Zhao

Poly (vinylidene fluoride) (PVDF) is a kind of semicrystalline organic polymer piezoelectric material. Adopting processes such as melting crystallization and solution casting, and undergoing post-treatment processes such as annealing, stretching, and polarization, PVDF films with high crystallinity and high piezoelectric response level can be realized. As a polymer material, PVDF shows excellent mechanical properties, chemical stability and biocompatibility, and is light in weight, easily prepared, which can be designed into miniaturized, chip-shaped and integrated devices. It has a wide range of applications in self-powered equipment such as sensors, nanogenerators and currently is a research hotspot for use as flexible wearable or implantable materials. This article mainly introduces the crystal structures, piezoelectric properties and their applications in flexible piezoelectric devices of PVDF materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid T. Qazvini ◽  
Ravichandar Babarao ◽  
Shane G. Telfer

AbstractEfficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.


2021 ◽  
Author(s):  
Chaojie Chen ◽  
Shilong Zhao ◽  
Caofeng Pan ◽  
Yunlong Zi ◽  
Fangcheng Wang ◽  
...  

Abstract Polymer-based piezoelectric devices are promising for developing future wearable force sensors, nanogenerators, and implantable electronics etc. The electric signals generated by them are often assumed as solely coming from piezoelectric effect. However, triboelectric signals originated from contact electrification between the piezoelectric devices and the contacted objects can produce non-negligible interfacial electron transfer, which is often combined with the piezoelectric signal to give a triboelectric-piezoelectric hybrid output, leading to an exaggerated measured “piezoelectric” signal. Herein, a simple and effective method is proposed for quantitatively identifying and extracting the piezoelectric charge from the hybrid signal. The triboelectric and piezoelectric parts in the hybrid signal generated by a poly(vinylidene fluoride)-based device are clearly differentiated, and their force and charge characteristics in the time domain are identified. This work presents an effective method to elucidate the true piezoelectric performance in practical measurement, which is crucial for evaluating piezoelectric materials fairly and correctly.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba6714 ◽  
Author(s):  
Shiqiang Zhao ◽  
Qingqing Wu ◽  
Jiuchan Pi ◽  
Junyang Liu ◽  
Jueting Zheng ◽  
...  

Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 273 ◽  
Author(s):  
Sudheer S. Kurup ◽  
Richard J. Staples ◽  
Richard L. Lord ◽  
Stanislav Groysman

Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1′:4′,1′’-terphenyl]-2,2′’-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr–alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand.


2019 ◽  
Vol 21 (34) ◽  
pp. 18612-18621 ◽  
Author(s):  
M. Idrees ◽  
H. U. Din ◽  
R. Ali ◽  
G. Rehman ◽  
T. Hussain ◽  
...  

Janus monolayers and their van der Waals heterostuctures are investigated by hybrid density functional theory calculations.


2020 ◽  
Vol 16 ◽  
pp. 391-397 ◽  
Author(s):  
Mai Nagase ◽  
Kenta Kato ◽  
Akiko Yagi ◽  
Yasutomo Segawa ◽  
Kenichiro Itami

Hexa-peri-hexabenzocoronene (HBC) is known to be a poorly soluble polycyclic aromatic hydrocarbon for which direct functionalization methods have been very limited. Herein, the synthesis of hexaborylated HBC from unsubstituted HBC is described. Iridium-catalyzed six-fold C–H borylation of HBC was successfully achieved by screening solvents. The crystal structure of hexaborylated HBC was confirmed via X-ray crystallography. Optoelectronic properties of the thus-obtained hexaborylated HBC were analyzed with the support of density functional theory calculations. The spectra revealed a bathochromic shift of absorption bands compared with unsubstituted HBC under the effect of the σ-donation of boryl groups.


Sign in / Sign up

Export Citation Format

Share Document