scholarly journals Observation of a transition between dynamical phases in a quantum degenerate Fermi gas

2019 ◽  
Vol 5 (8) ◽  
pp. eaax1568 ◽  
Author(s):  
Scott Smale ◽  
Peiru He ◽  
Ben A. Olsen ◽  
Kenneth G. Jackson ◽  
Haille Sharum ◽  
...  

A proposed paradigm for out-of-equilibrium quantum systems is that an analog of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dynamical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived because of an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a nonequilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.

2019 ◽  
Vol 28 (01n02) ◽  
pp. 1930001 ◽  
Author(s):  
Munekazu Horikoshi ◽  
Makoto Kuwata-Gonokami

The internal structure of neutron stars and the physical properties of nuclei depend on the equation of state (EOS) of neutron matter. Dilute neutron matter is a quantum system of spin-1/2 Fermi particles interacting via s-wave scattering. Although a nuclear system and an ultracold atomic system have length scales and energy scales that differ by several orders of magnitude, both systems follow a common universal EOS considering their nondimensional universal interaction parameters. In this study, we determine the EOS of neutron matter in the dilute region, where the influence of the s-wave scattering length is dominant but that of the effective range is small, by utilizing a quantum simulator of ultracold 6Li atoms with Feshbach resonance.


Science ◽  
2018 ◽  
Vol 363 (6425) ◽  
pp. 379-382 ◽  
Author(s):  
Peter T. Brown ◽  
Debayan Mitra ◽  
Elmer Guardado-Sanchez ◽  
Reza Nourafkan ◽  
Alexis Reymbaut ◽  
...  

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012026
Author(s):  
Miloslav Znojil

Abstract With an innovative idea of acceptability and usefulness of the non-Hermitian representations of Hamiltonians for the description of unitary quantum systems (dating back to the Dyson’s papers), the community of quantum physicists was offered a new and powerful tool for the building of models of quantum phase transitions. In this paper the mechanism of such transitions is discussed from the point of view of mathematics. The emergence of the direct access to the instant of transition (i.e., to the Kato’s exceptional point) is attributed to the underlying split of several roles played by the traditional single Hilbert space of states ℒ into a triplet (viz., in our notation, spaces K and ℋ besides the conventional ℒ ). Although this explains the abrupt, quantum-catastrophic nature of the change of phase (i.e., the loss of observability) caused by an infinitesimal change of parameters, the explicit description of the unitarity-preserving corridors of access to the phenomenologically relevant exceptional points remained unclear. In the paper some of the recent results in this direction are summarized and critically reviewed.


Science ◽  
2019 ◽  
Vol 364 (6437) ◽  
pp. 260-263 ◽  
Author(s):  
Tiff Brydges ◽  
Andreas Elben ◽  
Petar Jurcevic ◽  
Benoît Vermersch ◽  
Christine Maier ◽  
...  

Entanglement is a key feature of many-body quantum systems. Measuring the entropy of different partitions of a quantum system provides a way to probe its entanglement structure. Here, we present and experimentally demonstrate a protocol for measuring the second-order Rényi entropy based on statistical correlations between randomized measurements. Our experiments, carried out with a trapped-ion quantum simulator with partition sizes of up to 10 qubits, prove the overall coherent character of the system dynamics and reveal the growth of entanglement between its parts, in both the absence and presence of disorder. Our protocol represents a universal tool for probing and characterizing engineered quantum systems in the laboratory, which is applicable to arbitrary quantum states of up to several tens of qubits.


1988 ◽  
Vol 03 (18) ◽  
pp. 1839-1845 ◽  
Author(s):  
LAY NAM CHANG ◽  
YIGAO LIANG

Quantum systems described by parametrized Hamiltonians are studied in a general context. Within this context, the classification scheme of Avron-Seiler-Simon for non-degenerate energy bands is extended to cover general parameter spaces, while their sum rule is generalized to cover cases with degenerate bands as well. Additive topological quantum numbers are defined, and these are shown to be conserved in energy band “collisions”. The conservation laws dictate that when some invariants are non-vanishing, no energy gap can develop in a set of degenerate bands. This gives rise to a series of splitting rules.


2018 ◽  
Vol 96 (9) ◽  
pp. 859-864 ◽  
Author(s):  
Jorge H.S.K. Monteiro ◽  
Fernando A. Sigoli ◽  
Ana de Bettencourt-Dias

The water soluble [Tb(dipicCbz)3]3− (dipicCbz = 4-(9H-carbazol-9-yl-)pyridine-2,6-dicarboxylato) complex was isolated and evaluated as a temperature sensor in water. The 1:3 (TbIII:dipicCbz2−) stoichiometry in solution was confirmed by luminescence titration and high-resolution mass spectrometry. The quantum yield of sensitized emission is 3.8% ± 0.4% at 25.0 ± 0.1 °C, and the emission intensity depends on the temperature in the range of 5–70 °C with a relative thermal sensitivity of 3.4% °C−1 at 35 °C and temperature resolution < 0.01 °C in the range of 30–40 °C. The reversibility of this behavior was demonstrated for three heating–cooling cycles. Calculations of the energy gap between donor and acceptor show that the temperature dependence of the emission intensity is due to back-energy transfer from the Tb 5D4 excited state to the triplet and twisted intramolecular charge transfer (TICT) states of the dipicCbz. The assignment of one of the energy levels as a TICT state was confirmed by the temperature-dependent behavior of the phosphorescence band.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345030 ◽  
Author(s):  
MARCELO S. SARANDY ◽  
THIAGO R. DE OLIVEIRA ◽  
LUIGI AMICO

The ground state of a quantum spin chain is a natural playground for investigating correlations. Nevertheless, not all correlations are genuinely of quantum nature. Here we review the recent progress to quantify the "quantumness" of the correlations throughout the phase diagram of quantum spin systems. Focusing to one spatial dimension, we discuss the behavior of quantum discord (QD) close to quantum phase transitions (QPT). In contrast to the two-spin entanglement, pairwise discord is effectively long-ranged in critical regimes. Besides the features of QPT, QD is especially feasible to explore the factorization phenomenon, giving rise to nontrivial ground classical states in quantum systems. The effects of spontaneous symmetry breaking are also discussed as well as the identification of quantum critical points through correlation witnesses.


Sign in / Sign up

Export Citation Format

Share Document