scholarly journals Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation

2020 ◽  
Vol 6 (46) ◽  
pp. eaba9543 ◽  
Author(s):  
Zhangwei Wang ◽  
Wenjun Lu ◽  
Huan Zhao ◽  
Christian H. Liebscher ◽  
Junyang He ◽  
...  

High-performance lightweight materials are urgently needed, given the pressing quest for weight reduction and the associated energy savings and emission reduction. Here, by incorporating the multi–principal element feature of compositionally complex alloys, we develop the concept of lightweight steels further and propose a new class of compositionally complex steels (CCSs). This approach allows us to use the high solid solution strengthening and shift the alloys’ compositions into previously unattainable phase regions where both nanosized shearable κ-carbides and non-shearable B2 particles are simultaneously formed. The achievement of dual-nanoprecipitation in our CCSs leads to materials with ultrahigh specific tensile strength (up to 260 MPa·cm3 g−1) and excellent tensile elongation (13 to 38%), a combination outperforming all other high-strength high-entropy alloys and advanced lightweight steels. Our concept of CCSs is thus useful for guiding the design of ultrastrong lightweight metallic materials.


2021 ◽  
Author(s):  
Shailesh Kumar Singh ◽  
Vivek K. Singh

The conventional design approach of alloys initiates with one principal element and continues by adding several alloying elements to obtain desired properties. In this method, the intrinsic properties of the designed alloy are governed by the principal element. For example, in steel alloy, iron is the principal element, Aluminium in aluminium alloy, and so on. Compared to the conventional alloy, high entropy alloys do not have any dominating elements; all the elements present in these alloys either have an equal or near-equal ratio of elements. As reported in the literature, these alloys exhibit interesting material properties such as high strength, high hardness, improved elevated temperature strength, and magnetic properties. These characteristics make HEAs a suitable option for high-performance applications in the aero engine, aerospace structures, and machine tools. High entropy alloy has multiple principal elements as shown in schematic diagram 1; it leads to much higher possible compositions than conventional alloys. The huge compositional space provides an opportunity to improve desired mechanical properties. If it is explored through “trial and error,” it will be challenging and cumbersome. Therefore, search schemes that can competently and promptly recognize particular alloys with desired properties are essential. Artificial Intelligence is a useful tool to model, discover, and optimize new alloys that enable predicting individual material properties as a function of composition. While the application of Artificial Intelligence is quite popular in many aspects of society, its usage in material informatics is still in the nascent stage. The algorithm used in artificial intelligence is trained to pick up predictive rules from data and create a material model quicker than a computational model and can even generate the model for which no physical model exists. Artificial Intelligence (AI) allows predicting a set of experiments to be conducted to detect new alloy having desired properties. Thus, AI can be used as a valuable tool to optimize the development of new alloys.



Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract TECHALLOY WASPALOY, a nickel-base austenitic precipitation-hardenable alloy, derives its high strength at elevated temperatures from additions of the solid-solution strengthening elements molybdenum, cobalt and chromium and from aluminum and titanium which produce age hardening. Boron and zirconium additions also have been made to obtain optimum stress-rupture strength. It has excellent strength and good resistance to corrosion and oxidation at least to 1600 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-243. Producer or source: Techalloy Company Inc..



2021 ◽  
pp. 110877
Author(s):  
Ankit Roy ◽  
Praveen Sreeramagiri ◽  
Tomas Babuska ◽  
Brandon Krick ◽  
Pratik K. Ray ◽  
...  


2019 ◽  
Vol 151 ◽  
pp. 310-317 ◽  
Author(s):  
Carlyn R. LaRosa ◽  
Mulaine Shih ◽  
Céline Varvenne ◽  
Maryam Ghazisaeidi


2006 ◽  
Vol 503-504 ◽  
pp. 209-214 ◽  
Author(s):  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Recently nanocrystalline Al-Fe alloys produced by a vapor quench method have been reported. These alloys are supersaturated solid solution and exhibit high strength with good ductility. It is postulated that the high strength of the Al-Fe alloys could be achieved by both the nano-grained structures and the solid solution strengthening. The contribution to the yield strength due to both the grain size strengthening and the solid solution strengthening were analyzed from the experimental data. Then the contribution to the yield strength due to the solid solution strengthening was estimated from the misfit strain calculated from the first principles in order to compare with analytical results estimated from the experimental data.



AIP Advances ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 125008 ◽  
Author(s):  
Norihiko L. Okamoto ◽  
Koretaka Yuge ◽  
Katsushi Tanaka ◽  
Haruyuki Inui ◽  
Easo P. George


2021 ◽  
pp. 3-15
Author(s):  
A.V. Levenets ◽  
M.A. Tikhonovsky ◽  
V.N. Voyevodin ◽  
A.G. Shepelev ◽  
O.V. Nemashkalo

A new class of metallic materials, so-called “high-entropy alloys” (HEAs), was under review. Various definitions of these alloys are given, their main differences from the conventional alloys are indicated and the dynamics of publications in the period from the first publications in 2004 to the end of 2020 are presented. It is noted the almost exponential growth of the article numbers concerning these alloys, and the main reasons of such high interest are discussed. Experimental results of development the radiation-tolerant materials based on the concept of high-entropy alloys and study of the radiation damage mechanisms are summarised.



2020 ◽  
Author(s):  
Jitesh Kumar ◽  
Nilesh P Gurao ◽  
Krishanu Biswas

<p>The effect of aluminium addition to the Cantor alloy in the composition regime of 0.25-5 atomic percent on solid solution strengthening of single phase HEA was investigated using experiments and constitutive modeling. The continuous increase in yield and tensile strength without significant change in ductility is observed for the alloys characterized by almost similar grain sizes (~100 μm) with increasing aluminium content. The constitute modeling of the strengthening has been performed using traditional as well as recently developed models for solid solution strengthening. The constitutive modeling indicated significant contribution of solid solution strengthening due to addition of Al having relatively larger size (̴12%) than the size of elements in the Cantor alloy leading to severe local lattice distortion. The experimental yield strength could be best explained on the basis of large apparent distortion volume of Al atom acting as a stronger barrier to dislocation motion based on the Varvenne model. </p>



Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5808
Author(s):  
Jinfeng Leng ◽  
Yunfan Dong ◽  
Binghui Ren ◽  
Ran Wang ◽  
Xinying Teng

7075Al alloy is the preferred material for lightweight automotive applications, but the existing problem is that it is difficult to combine high strength and high toughness. This paper presents our research aimed at obtaining high strength and high toughness materials by adding a nano-phase to realize microstructure refinement. Graphene nanoplates (GNP)/7075Al composites and 7075Al alloy were prepared by a stirring casting method in the present study. In comparison to 7075Al, the tensile strength of GNP/7075Al composites was increased from 572 MPa to 632 MPa while maintaining good uniform elongation of 8% to 10%. The increased strength behavior of GNP/7075Al composites while maintaining the plasticity is discussed in terms of grain refinement and dislocation evolution by analyzing the composite microstructure and quantitatively analyzing the contributions of grain boundary strengthening, solid solution strengthening, precipitation strengthening and dislocation strengthening. GNP’s strengthening of GNP/7075Al composites is mainly attributed to the refinement of grain size and the increase of dislocation density.



Sign in / Sign up

Export Citation Format

Share Document