scholarly journals Effects of Graphene Nanoplates on the Mechanical Behavior and Strengthening Mechanism of 7075Al Alloy

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5808
Author(s):  
Jinfeng Leng ◽  
Yunfan Dong ◽  
Binghui Ren ◽  
Ran Wang ◽  
Xinying Teng

7075Al alloy is the preferred material for lightweight automotive applications, but the existing problem is that it is difficult to combine high strength and high toughness. This paper presents our research aimed at obtaining high strength and high toughness materials by adding a nano-phase to realize microstructure refinement. Graphene nanoplates (GNP)/7075Al composites and 7075Al alloy were prepared by a stirring casting method in the present study. In comparison to 7075Al, the tensile strength of GNP/7075Al composites was increased from 572 MPa to 632 MPa while maintaining good uniform elongation of 8% to 10%. The increased strength behavior of GNP/7075Al composites while maintaining the plasticity is discussed in terms of grain refinement and dislocation evolution by analyzing the composite microstructure and quantitatively analyzing the contributions of grain boundary strengthening, solid solution strengthening, precipitation strengthening and dislocation strengthening. GNP’s strengthening of GNP/7075Al composites is mainly attributed to the refinement of grain size and the increase of dislocation density.

Alloy Digest ◽  
1977 ◽  
Vol 26 (4) ◽  

Abstract TECHALLOY WASPALOY, a nickel-base austenitic precipitation-hardenable alloy, derives its high strength at elevated temperatures from additions of the solid-solution strengthening elements molybdenum, cobalt and chromium and from aluminum and titanium which produce age hardening. Boron and zirconium additions also have been made to obtain optimum stress-rupture strength. It has excellent strength and good resistance to corrosion and oxidation at least to 1600 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-243. Producer or source: Techalloy Company Inc..


2020 ◽  
Vol 321 ◽  
pp. 11078
Author(s):  
Yan Du ◽  
Jinwen Lu ◽  
Wei Zhang ◽  
Yusheng Zhang

The microstructure and mechanical properties of Ti-2Si-2Nb-2Fe-1Hf-1Ta-1W alloy with (TiHf)5Si3 particle-reinforcement and their underlying relations have been studied. Electron microscope observations and correlative statistical analysis have been made to analyze microstructure evolution with heat treatments. The (TiHf)5Si3 particles with 800 nm in diameter were found uniformly distributed at α/β boundaries and triple junctions and turned out to be stable even after heat treatments at high temperature for a long period, inhibiting grain growth and dislocation motion. In addition, multi-strengthening-mechanisms including particle strengthening, solid-solution strengthening, grain boundary strengthening and dislocation strengthening have been discussed.


2006 ◽  
Vol 503-504 ◽  
pp. 209-214 ◽  
Author(s):  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Recently nanocrystalline Al-Fe alloys produced by a vapor quench method have been reported. These alloys are supersaturated solid solution and exhibit high strength with good ductility. It is postulated that the high strength of the Al-Fe alloys could be achieved by both the nano-grained structures and the solid solution strengthening. The contribution to the yield strength due to both the grain size strengthening and the solid solution strengthening were analyzed from the experimental data. Then the contribution to the yield strength due to the solid solution strengthening was estimated from the misfit strain calculated from the first principles in order to compare with analytical results estimated from the experimental data.


2011 ◽  
Vol 261-263 ◽  
pp. 712-716 ◽  
Author(s):  
Chao Zhang ◽  
Run Wu ◽  
Chang Song ◽  
Yong Fu Zhang ◽  
Shu Li Li ◽  
...  

The grain refining of C-Mn steel on CSP line was investigated in this paper. The grain size was about 100μm after rolling by stand F1 and then decreased all the way of the rolling process(stands F2-F6) to 15μm. The strengthening mechanisms, grain refinement strengthening, solution strengthening, precipitation strengthening and dislocation strengthening, were figured out to develop a physical metallurgy model for prediction of the properties. It was noted that there is an agreement between the predicted properties and the measured ones of the steel.


2020 ◽  
Vol 6 (46) ◽  
pp. eaba9543 ◽  
Author(s):  
Zhangwei Wang ◽  
Wenjun Lu ◽  
Huan Zhao ◽  
Christian H. Liebscher ◽  
Junyang He ◽  
...  

High-performance lightweight materials are urgently needed, given the pressing quest for weight reduction and the associated energy savings and emission reduction. Here, by incorporating the multi–principal element feature of compositionally complex alloys, we develop the concept of lightweight steels further and propose a new class of compositionally complex steels (CCSs). This approach allows us to use the high solid solution strengthening and shift the alloys’ compositions into previously unattainable phase regions where both nanosized shearable κ-carbides and non-shearable B2 particles are simultaneously formed. The achievement of dual-nanoprecipitation in our CCSs leads to materials with ultrahigh specific tensile strength (up to 260 MPa·cm3 g−1) and excellent tensile elongation (13 to 38%), a combination outperforming all other high-strength high-entropy alloys and advanced lightweight steels. Our concept of CCSs is thus useful for guiding the design of ultrastrong lightweight metallic materials.


2012 ◽  
Vol 476-478 ◽  
pp. 59-64
Author(s):  
Chong Cai Zhang ◽  
Yong Fei Yang ◽  
Wei Xing Wu ◽  
Long Wang

In this paper, TZS88 aluminum alloy mechanical properties of three months of natural aging is tested, the microstructure and the strengthening mechanism is studied by the application of optical metallographic microscope and scanning electron microscopy. The results show that TZS88 aluminum reinforced mainly caused by solid solution strengthening, aging strengthening and dispersion strengthening, and as such its tensile strength, hardness and elongation in the natural aging have reached ZQSn6-6-3 bronze level, the microstructure are compounds which included α(Al) solid solution matrix + Sn + s, θ, T, ε etc.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract ALLVAC WASPALOY, a nickel-base precipitation hardening alloy derives its high strength through the precipitation of gamma prime as a result of the aluminum and titanium additions and through the solid solution strengthening of other component elements. It is produced by vacuum induction melting followed by consummable vacuum are or electroslag remelting. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-404. Producer or source: Allvac Inc..


Author(s):  
Narendra Kumar ◽  
Gaurav Gautam ◽  
Rakesh Kumar Gautam ◽  
Anita Mohan ◽  
Sunil Mohan

In the present study, in situ reaction technique has been employed to prepare AA5052 matrix composites reinforced with different vol. % of ZrB2 particles (i.e., 0, 4.5, and 9 vol. %). Composites have been characterized by X-ray diffraction (XRD) to confirm the in situ formation of ZrB2 particles in the matrix. Optical Microscopy (OM) studies reveal the refinement of aluminum-rich phase due to the presence of ZrB2 particles. Scanning electron microscopy (SEM) studies reveal size and distribution of ZrB2 particles while transmission electron microscopy (TEM) reveals the presence of dislocations in the matrix around ZrB2 particles. Hardness and tensile testing of composites have been carried out at room temperature to evaluate the mechanical properties. The results reveal the improvement in hardness and strength with increased amount of ZrB2 particles. Strength of AA5052/ZrB2 in situ composites has been analyzed by various strengthening mechanism models. The analysis revealed that Orowan and Solid solution strengthening mechanisms are the predominant mechanism for high strength composites. Theoretical yield strength is about 6–10% higher than the experimental values due to clustering tendency of ZrB2 particles.


Sign in / Sign up

Export Citation Format

Share Document