scholarly journals In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions

2020 ◽  
Vol 6 (39) ◽  
pp. eabb0413 ◽  
Author(s):  
Danilo Di Genova ◽  
Richard A. Brooker ◽  
Heidy M. Mader ◽  
James W. E. Drewitt ◽  
Alessandro Longo ◽  
...  

Although gas exsolution is a major driving force behind explosive volcanic eruptions, viscosity is critical in controlling the escape of bubbles and switching between explosive and effusive behavior. Temperature and composition control melt viscosity, but crystallization above a critical volume (>30 volume %) can lock up the magma, triggering an explosion. Here, we present an alternative to this well-established paradigm by showing how an unexpectedly small volume of nano-sized crystals can cause a disproportionate increase in magma viscosity. Our in situ observations on a basaltic melt, rheological measurements in an analog system, and modeling demonstrate how just a few volume % of nanolites results in a marked increase in viscosity above the critical value needed for explosive fragmentation, even for a low-viscosity melt. Images of nanolites from low-viscosity explosive eruptions and an experimentally produced basaltic pumice show syn-eruptive growth, possibly nucleating a high bubble number density.

2020 ◽  
Author(s):  
Francisco Cáceres ◽  
Fabian Wadsworth ◽  
Bettina Scheu ◽  
Mathieu Colombier ◽  
Claudio Madonna ◽  
...  

<p>Magma degassing dynamics play an important role controlling the explosivity of volcanic eruptions. Some of the largest explosive eruptions in history have been fed by silica-rich magmas in volcanic systems with complex dynamics of volatiles degassing. Degassing of magmatic water drives bubble nucleation and growth, which in turn increases magma buoyancy and results in magma ascent and an eventual eruption. While micro- to milli-meter sized crystals are known to cause heterogeneous bubble nucleation and to facilitate bubble coalescence, the effects of nanolites remains mostly unexplored. Nanolites have been hypothesized to be a primary control on the eruptive style of silicic volcanoes, however the mechanisms behind this control remains unclear.</p><p>Here we use an experimental approach to show how nanolites dramatically increase the bubble number density in a degassing silicic magma compared to the same magma without nanolites. The experiments were conducted using both nanolite-free and nanolite-bearing rhyolitic glass with different low initial water content. Using an Optical Dilatometer at 1 bar ambient pressure, cylindrical samples were heated at variable rates (1-30 °C min<sup>-1</sup>) to final temperatures of 820-1000 °C. This method allowed us to continuously monitor the volume, and hence porosity evolution in time. X-ray computed microtomography (µCT) and Scanning Electron Microscope (SEM) analyses revealed low and high bubble number densities for the nanolite-free and nanolite-bearing samples respectively.</p><p>Comparing vesicle number densities of natural volcanic rocks from explosive eruptions and our experimental results, we speculate that some very high naturally occurring bubble number densities could be associated with nanolites. We use a magma ascent model with P-T-H<sub>2</sub>O starting conditions relevant for known silicic eruptions to further underpin that such an increase in bubble number density caused driven by the presence of nanolites can feasibly turn an effusive eruption to an eventually explosive behavior.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sahand Hajimirza ◽  
Helge M. Gonnermann ◽  
James E. Gardner

AbstractMagma from Plinian volcanic eruptions contains an extraordinarily large numbers of bubbles. Nucleation of those bubbles occurs because pressure decreases as magma rises to the surface. As a consequence, dissolved magmatic volatiles, such as water, become supersaturated and cause bubbles to nucleate. At the same time, diffusion of volatiles into existing bubbles reduces supersaturation, resulting in a dynamical feedback between rates of nucleation due to magma decompression and volatile diffusion. Because nucleation rate increases with supersaturation, bubble number density (BND) provides a proxy record of decompression rate, and hence the intensity of eruption dynamics. Using numerical modeling of bubble nucleation, we reconcile a long-standing discrepancy in decompression rate estimated from BND and independent geospeedometers. We demonstrate that BND provides a record of the time-averaged decompression rate that is consistent with independent geospeedometers, if bubble nucleation is heterogeneous and facilitated by magnetite crystals.


2020 ◽  
Author(s):  
Fabio Arzilli ◽  
Giuseppe La Spina ◽  
Mike R. Burton ◽  
Margherita Polacci ◽  
Nolwenn Le Gall ◽  
...  

<p>Basaltic eruptions are the most common form of volcanism on Earth and planetary bodies. The low viscosity of basaltic magmas generally favours effusive and mildly explosive volcanic activity. Highly explosive basaltic eruptions occur less frequently and their eruption mechanism still remains subject to debate, with implications for the significant hazard associated with explosive basaltic volcanism. Particularly, highly explosive eruptions require magma fragmentation, yet it is unclear how basaltic magmas can reach the fragmentation threshold.</p><p>In volcanic conduits, the crystallisation kinetics of an ascending magma are driven by degassing and cooling. So far, the crystallisation kinetics of magmas have been estimated through ex situ crystallization experiments. However, this experimental approach induces underestimation of crystallization kinetics in silicate melts. The   crystallization experiments reported in this study were performed in situ at Diamond Light Source (experiment EE12392 at the I12 beamline), Harwell, UK, using basalt from the 2001 Etna eruption as the starting material. We combined a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography to image the evolution of crystallization in real time. After 4 hours at sub-liquidus conditions (1170 °C and 1150 °C) the system was perturbed through a rapid cooling (0.4 °C/s), inducing a sudden increase of undercooling. Our study reports the first in situ observation of exceptionally rapid plagioclase and clinopyroxene crystallisation in trachybasaltic magmas. We combine these constraints on crystallisation kinetics and viscosity evolution with a numerical conduit model to show that exceptionally rapid syn-eruptive crystallisation is the fundamental process required to trigger basaltic magma fragmentation under high strain rates. Our in situ experimental and natural observations combined with a numerical conduit model allow us to conclude that pre-eruptive temperatures <1,100°C can promote highly explosive basaltic eruptions, such as Plinian volcanism, in which fragmentation is induced by fast syn-eruptive crystal growth under high undercooling and high decompression rates. This implies that all basaltic systems on Earth have the potential to produce powerful explosive eruptions.</p>


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Pedro Valdivia ◽  
Aaron A. Marshall ◽  
Brittany D. Brand ◽  
Michael Manga ◽  
Christian Huber

AbstractMafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13 to 6.3 × 10−12 m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.


Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


Sign in / Sign up

Export Citation Format

Share Document