scholarly journals Promoting the activation of T cells with glycopolymer-modified dendritic cells by enhancing cell interactions

2020 ◽  
Vol 6 (47) ◽  
pp. eabb6595
Author(s):  
Liyin Yu ◽  
Ruyan Feng ◽  
Lijuan Zhu ◽  
Qing Hao ◽  
Jiacheng Chu ◽  
...  

Dendritic cell (DC) modification to enhance antigen presentation is a valuable strategy in cancer immune therapy. Other than focusing on regulating interactions between DC and antigens, we intend to promote cell interactions between DC and T cell by cell surface engineering. T cell activation is greatly improved and generates higher tumor toxicity with the aid of the synthetic glycopolymer modified on the DC surface, although the glycopolymer alone shows no effect. The great promotion of DC–T cell attraction is revealed by cell image tracking in terms of both frequency and duration of contacts. Our findings provide a new method of T cell activation by these engineered “sweet DCs.” This strategy is beneficial for developing more efficient DC-based vaccines.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunqian Qiao ◽  
Yangmin Qiu ◽  
Jie Ding ◽  
Nana Luo ◽  
Hao Wang ◽  
...  

AbstractExpression of the cell surface receptor CD137 has been shown to enhance anti-cancer T cell function via engagement with its natural ligand 4-1BBL. CD137 ligation with engineered ligands has emerged as a cancer immunotherapy strategy, yet clinical development of agonists has been hindered by either toxicity or limited efficacy. Here we show that a CD137/PD-1 bispecific antibody, IBI319, is able to overcome these limitations by coupling CD137 activation to PD-1-crosslinking. In CT26 and MC38 syngeneic mouse tumour models, IBI319 restricts T cell co-stimulation to PD-1-rich microenvironments, such as tumours and tumour-draining lymph nodes, hence systemic (liver) toxicity arising from generalised T cell activation is reduced. Besides limiting systemic T cell co-stimulation, the anti-PD-1 arm of IBI319 also exhibits checkpoint blockade functions, with an overall result of T and NK cell infiltration into tumours. Toxicology profiling in non-human primates shows that IBI319 is a well-tolerated molecule with IgG-like pharmacokinetic properties, thus a suitable candidate for further clinical development.


1990 ◽  
Vol 51 (3) ◽  
pp. 265-276 ◽  
Author(s):  
Ian Beckman ◽  
Katina Dimopoulos ◽  
Xu Xiaoning ◽  
John Bradley ◽  
Philip Henschke ◽  
...  

2013 ◽  
Vol 191 (5) ◽  
pp. 2372-2383 ◽  
Author(s):  
Jason S. Mitchell ◽  
Brandon J. Burbach ◽  
Rupa Srivastava ◽  
Brian T. Fife ◽  
Yoji Shimizu

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. TPS9080-TPS9080
Author(s):  
Taofeek Kunle Owonikoko ◽  
Hossein Borghaei ◽  
Stéphane Champiat ◽  
Luis G. Paz-Ares ◽  
Ramaswamy Govindan ◽  
...  

TPS9080 Background: SCLC is an aggressive neuroendocrine tumor with poor prognosis and few treatment options. Delta-like ligand 3 (DLL3) is an inhibitory Notch ligand that is highly expressed on the surface of most SCLC tumors but minimally expressed in normal tissues. As such, DLL3 may be a promising therapeutic target. AMG 757 is an HLE BiTE immune therapy designed to redirect cytotoxic T cells to cancer cells by binding to DLL3 on cancer cells and CD3 on T cells, resulting in T cell activation and expansion and T cell-dependent killing of tumor cells. In addition to its direct antitumor effect, BiTE immune therapy can inflame the tumor microenvironment. Combining AMG 757 with a PD-1 pathway inhibitor may lead to increased antitumor activity by enabling sustained T cell-dependent killing of tumor cells. Methods: NCT03319940 is an open-label, ascending, multiple-dose, phase 1 study evaluating AMG 757 as monotherapy; the protocol was recently amended to also evaluate AMG 757 in combination with pembrolizumab. The study will include a dose exploration (monotherapy and combination) followed by a dose expansion (monotherapy). Key eligibility criteria: adult patients with relapsed/refractory SCLC whose disease progressed or recurred after at least 1 platinum-based chemotherapy regimen, ECOG performance status 0–2, at least 2 measurable lesions per modified RECIST 1.1, no untreated or symptomatic brain metastases, and adequate organ function. Primary objectives are to evaluate safety/tolerability and determine the maximum tolerated dose or recommended phase 2 dose of AMG 757 as monotherapy and in combination with pembrolizumab. Secondary objectives are to characterize pharmacokinetics and evaluate preliminary antitumor activity; exploratory objectives are to assess immunogenicity and changes in biomarkers in blood and tumor tissue. In the dose exploration phase, dose escalation/de-escalation decisions will be guided by a Bayesian logistic regression model; backfill enrollment at dose levels deemed safe and tolerable will be allowed. The study is open and recruiting patients. Clinical trial information: NCT03319940.


Sign in / Sign up

Export Citation Format

Share Document