scholarly journals Sexual dimorphism in the meiotic requirement for PRDM9: A mammalian evolutionary safeguard

2020 ◽  
Vol 6 (43) ◽  
pp. eabb6606
Author(s):  
Natalie R. Powers ◽  
Beth L. Dumont ◽  
Chihiro Emori ◽  
Raman Akinyanju Lawal ◽  
Catherine Brunton ◽  
...  

In many mammals, genomic sites for recombination are determined by the histone methyltransferase PRMD9. Some mouse strains lacking PRDM9 are infertile, but instances of fertility or semifertility in the absence of PRDM9 have been reported in mice, canines, and a human female. Such findings raise the question of how the loss of PRDM9 is circumvented to maintain fertility. We show that genetic background and sex-specific modifiers can obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that, in the absence of PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting sex-specific regulation of meiotic recombination, a finding with implications for speciation.

2020 ◽  
Author(s):  
Natalie R Powers ◽  
Beth L Dumont ◽  
Chihiro Emori ◽  
Raman Akinyanju Lawal ◽  
Catherine Brunton ◽  
...  

AbstractIn many mammals, genomic sites for recombination are determined by histone methyltransferase PRMD9. Mice lacking PRDM9 are infertile, but instances of fertility or semi-fertility in the absence of PRDM9 have been reported in mice, canines and a human female. Such findings raise the question of how the loss of PRDM9 is circumvented to maintain reproductive fitness. We show that genetic background and sex-specific modifiers can obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that in the absence of PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting sex-specific regulation of meiotic recombination, a finding with implications for speciation.One Sentence SummarySex-specific modulation of a meiotic DNA damage checkpoint limits the requirement for PRDM9 in mammalian fertility.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Kara E Koehler ◽  
Jonathan P Cherry ◽  
Audrey Lynn ◽  
Patricia A Hunt ◽  
Terry J Hassold

AbstractGenetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains—CAST/Ei, A/J, C57BL/6, and SPRET/Ei—the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5033-5048 ◽  
Author(s):  
J.H. Hager ◽  
T.W. Cline

With a focus on Sex-lethal (Sxl), the master regulator of Drosophila somatic sex determination, we compare the sex determination mechanism that operates in the germline with that in the soma. In both cell types, Sxl is functional in females (2X2A) and nonfunctional in males (1X2A). Somatic cell sex is determined initially by a dose effect of X:A numerator genes on Sxl transcription. Once initiated, the active state of SXL is maintained by a positive autoregulatory feedback loop in which Sxl protein insures its continued synthesis by binding to Sxl pre-mRNA and thereby imposing the productive (female) splicing mode. The gene splicing-necessary factor (snf), which encodes a component of U1 and U2 snRNPs, participates in this RNA splicing control. Here we show that an increase in the dose of snf+ can trigger the female Sxl RNA splicing mode in male germ cells and can feminize triploid intersex (2X3A) germ cells. These snf+ dose effects are as dramatic as those of X:A numerator genes on Sxl in the soma and qualify snf as a numerator element of the X:A signal for Sxl in the germline. We also show that female-specific regulation of Sxl in the germline involves a positive autoregulatory feedback loop on RNA splicing, as it does in the soma. Neither a phenotypically female gonadal soma nor a female dose of X chromosomes in the germline is essential for the operation of this feedback loop, although a female X-chromosome dose in the germline may facilitate it. Engagement of the Sxl splicing feedback loop in somatic cells invariably imposes female development. In contrast, engagement of the Sxl feedback loop in male germ cells does not invariably disrupt spermatogenesis; nevertheless, it is premature to conclude that Sxl is not a switch gene in germ cells for at least some sex-specific aspects of their differentiation. Ironically, the testis may be an excellent organ in which to study the interactions among regulatory genes such as Sxl, snf, ovo and otu which control female-specific processes in the ovary.


2017 ◽  
Vol 23 (6) ◽  
pp. 706-722 ◽  
Author(s):  
Antonio Capalbo ◽  
Eva R Hoffmann ◽  
Danilo Cimadomo ◽  
Filippo Maria Ubaldi ◽  
Laura Rienzi

Cell Cycle ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 1918-1928 ◽  
Author(s):  
Erin K. Daugherity ◽  
Gabriel Balmus ◽  
Ahmed Al Saei ◽  
Elizabeth S. Moore ◽  
Delbert Abi Abdallah ◽  
...  

2020 ◽  
Author(s):  
Raymond F. Robledo ◽  
Steven L. Ciciotte ◽  
Joel H. Graber ◽  
Yue Zhao ◽  
Amy J. Lambert ◽  
...  

AbstractStudies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5-13.5 due to severe hemorrhage and decreased fetal liver erythropoiesis. Conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-Cre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in mouse models scat (G125V) and hlb381 (H794L) show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. Global transcriptomic studies in scat suggest potential targets to ameliorate disease progression.Author SummaryHematopoiesis is the process by which blood cells are formed. The individual must have a normal complement of red blood cells to prevent anemia, platelets to control bleeding, and white blood cells to maintain immune functions. All blood cells are derived from hematopoietic stem cells that differentiate into progenitor cells that then develop into mature circulating cells. We studied several mouse strains carrying different mutations in RASA3. We show that RASA3 is required at the earliest stages of blood formation, the stem and progenitor cells, and that the complement of genes other than RASA3, or the genetic background of the mutant strain, profoundly alters the overall effect on blood formation. Further, the molecular nature of the mutation in RASA3 also has a profound and independent effect on overall blood formation. One strain, designated scat, suffers cyclic anemia characterized by severe anemic crisis episodes interspersed with remissions where the anemia significantly improves. Comparison of scat crisis and remission hematopoietic stem and progenitor cells reveals striking differences in gene expression. Analyses of these expression differences provide clues to processes that potentially drive improvement of anemia in scat and provide new avenues to pursue in future studies to identify novel therapeutics for anemia.


2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Simon Dujardin ◽  
Mark De Los Santos ◽  
Analiese R. Fernandes ◽  
Riley N. Bannon ◽  
Tarun V. Kamath ◽  
...  

2020 ◽  
Vol 115 (6) ◽  
Author(s):  
Rebekka Medert ◽  
Andy Pironet ◽  
Lucas Bacmeister ◽  
Sebastian Segin ◽  
Juan E. Camacho Londoño ◽  
...  

AbstractTransient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased β-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure–volume analysis. Surprisingly, an increased β-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.


2020 ◽  
Vol 52 (10) ◽  
pp. 512-516
Author(s):  
Jawad S. Salloum ◽  
Diane E. Garsetti ◽  
Melissa B. Rogers

Genetic background is a key but sometimes overlooked factor that profoundly impacts disease susceptibility and presentation in both humans and disease models. Here we show that deficiency of KLOTHO protein, an important renal regulator of mineral homeostasis and a cofactor for FGF23, causes different phenotypes in 129S1/SvlmJ (129) and C57BL/6J (B6) mouse strains. The 129 strain is more severely affected, with decreased longevity, decreased body weight, and increased amounts of kidney calcification compared with B6 mice. Reciprocal F1 crosses of the strains also indicate a parentage effect on the Klotho phenotype with F1 KLOTHO-deficient progeny of B6 mothers and 129 fathers having more kidney calcification than progeny of 129 mothers and B6 fathers. Comparing and contrasting the genetic architecture leading to different phenotypes associated with specific inbred mouse strains may reveal previously unrecognized and important metabolic interactions affecting chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document