scholarly journals The source scaling and seismic productivity of slow slip transients

2021 ◽  
Vol 7 (32) ◽  
pp. eabg9718
Author(s):  
Luigi Passarelli ◽  
Paul Antony Selvadurai ◽  
Eleonora Rivalta ◽  
Sigurjón Jónsson

Slow slip events (SSEs) represent a slow faulting process leading to aseismic strain release often accompanied by seismic tremor or earthquake swarms. The larger SSEs last longer and are often associated with intense and energetic tremor activity, suggesting that aseismic slip controls tremor genesis. A similar pattern has been observed for SSEs that trigger earthquake swarms, although no comparative studies exist on the source parameters of SSEs and tremor or earthquake swarms. We analyze the source scaling of SSEs and associated tremor- or swarm-like seismicity through our newly compiled dataset. We find a correlation between the aseismic and seismic moment release indicating that the shallower SSEs produce larger seismic moment release than deeper SSEs. The scaling may arise from the heterogeneous frictional and rheological properties of faults prone to SSEs and is mainly controlled by temperature. Our results indicate that similar physical phenomena govern tremor and earthquake swarms during SSEs.

2020 ◽  
Author(s):  
Luigi Passarelli ◽  
Eleonora Rivalta ◽  
Paul Antony Selvadurai ◽  
Sigurjón Jónsson

<p>Slow slip events (SSEs) are slow fault ruptures that do not excite detectable seismic waves although they are often accompanied by some forms of seismic strain release, e.g., clusters of low- and very-low frequency earthquakes, and/or episodic or continuous non-volcanic tremor (i.e. tremor-genic SSEs) and earthquake swarms (swarm-genic SSEs). At subduction zones, increasing evidence indicates that aseismic slip and seismic strain release in the form of non-volcanic tremor represent the evolution of slow fracturing. In addition, aseismic slip rate modulates the release of seismic slip during tremor-genic SSEs. No general agreement has been reached, however, on whether source duration-moment scaling of SSEs is linear or follows that of ordinary earthquakes (cubic). To date, investigations on the source scaling has been based on global compilations of tremor-genic SSEs while no studies have looked into the source scaling of swarm-genic SSEs.</p><p>We present the first compilation of source parameters of swarm-genic slow slip events occurring in subduction zones as well as in extensional, transform and volcanic environments. We find for swarm-genic SSEs a power-law scaling of aseismic to seismic moment release during episodes of slow slip that is independent of the tectonic setting. The earthquake productivity, i.e., the ratio of seismic to aseismic moment released, of shallow SSEs is on average higher than that of deeper ones and scales inversely with rupture velocity. The inferred source scaling indicates a strong interplay between the evolution of aseismic slip and the associated seismic response of the host medium and that swarm-genic SSEs and tremor-genic SSEs arise from similar fracturing mechanisms. Depth dependent rheological conditions modulated by fluid pore pressure, temperature and density of asperities appear to be the main controls on the scaling. Large SSEs have systematically high earthquake productivity suggesting static stress transfer as an additional factor in triggering swarms of ordinary earthquakes. Our data suggest that during the slow slip evolution the proportion of seismic strain release is always smaller than the aseismic part although transient changes in stress and fault rheology imparted by swarm-genic SSEs can lead to delayed triggering of major and devastating earthquakes like in the Tohoku, Iquique and L’Aquila cases. The evidence of source scaling reported here will help constraining theoretical models of SSEs rupture propagation and seismic hazard assessments that should take into account the new scaling between aseismic and seismic moment release. </p>


2020 ◽  
Author(s):  
Frederique Rolandone ◽  
Jean-Mathieu nocquet ◽  
Patricia Mothes ◽  
Paul Jarrin ◽  
Mathilde Vergnolle

<p>In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.</p>


2020 ◽  
Author(s):  
Víctor Cruz-Atienza ◽  
Josué Tago ◽  
Carlos Villafuerte ◽  
Meng Wei ◽  
Ricardo Garza-Girón ◽  
...  

Abstract Triggering of large earthquakes on a fault that hosts aseismic slip or, conversely, triggering of slow slip events (SSE) by passing seismic waves involves seismological questions with major hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stressing produced by the seismic waves of the great Mw8.2 Tehuantepec earthquake, which strongly disturbed the aseismic beating over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.


2019 ◽  
Vol 510 ◽  
pp. 209-218 ◽  
Author(s):  
Patricia Martínez-Garzón ◽  
Marco Bohnhoff ◽  
David Mencin ◽  
Grzegorz Kwiatek ◽  
Georg Dresen ◽  
...  

2020 ◽  
Author(s):  
Marcel Thielmann ◽  
Thibault Duretz

<p>The accommodation of motion on faults spans a large spectrum of slip modes, ranging from stable creep to earthquakes. While seismic slip modes certainly have the largest impact on the surface due to the induced ground shaking, it has been recognized that slow aseismic slip modes relax most of the accumulated stresses on a fault. It has also been suggested that aseismic slip controls seismic events, thus making this kind of slip mode key for earthquake prediction.</p><p>Despite the importance of aseismic slow slip, its underlying physical mechanisms are still unclear. Commonly, slow slip events are modeled in terms of frictional failure, employing a rate-and-state model of fault friction, often also invoking fluids that alter frictional properties on the fault. However, at larger depths, frictional processes become increasingly difficult to activate due to the increase in ambient pressure and ductile processes are more likely to dominate deformation.</p><p>Here we therefore investigate deep aseismic slip processes governed by ductile deformation mechanisms using 2D numerical models, where we employ a composite viscoelastic rheology combined with grain size reduction and shear heating as weakening processes. We show that the collaborative action of these two weakening mechanisms is sufficient to create the entire spectrum of aseismic slip, ranging from stable creep to long-term slow slip events. The results show that ductile deformation does not necessarily result in stable slip and induces slip modes with considerably larger velocities than the far-field plate velocities. Moreover, the propagation of ductile ruptures induces large stresses in front of the rupture tip which may also trigger short-term seismic events.</p>


2020 ◽  
Author(s):  
Claudio Petrini ◽  
Luca Dal Zilio ◽  
Taras Gerya

<p>Slow slip events (SSEs) are part of a spectrum of aseismic processes that relieve tectonic stress on faults. Their occurrence in subduction zones have been suggested to trigger megathrust earthquakes due to perturbations in fluid pressure. However, examples to date have been poorly recorded and physical observations of temporal fluid pressure fluctuations through slow slip cycles remain elusive. Here, we use a newly developed two-phase flow numerical model — which couples solid rock deformation and pervasive fluid flow — to show how crustal stresses and fluid pressures within subducting megathrust evolve before and during slow slip and regular events. This unified 2D numerical framework couples inertial mechanical deformation and fluid flow by using finite difference methods, marker-in-cell technique, and poro-visco-elasto-plastic rheologies. Furthermore, an adaptive time stepping allows the correct resolution of both long- and short-time scales, ranging from years to milliseconds during the dynamic propagation of earthquake rupture.</p><p>Here we show how permeability and its spatial distribution control the degree of locking along the megathrust interface and the interplay between seismic and aseismic slip. While a constant permeability leads to more regular seismic cycles, a depth dependent permeability contributes substantially to the development of two distinct megathrust zones: a shallow, locked seismogenic zone and a deep, narrow aseismic segment characterized by SSEs. Furthermore, we show that without requiring any specific friction law, our model shows that permeability, episodic stress transfer and fluid pressure cycling control the predominant slip mode along the subduction megathrust. Specifically, we find that the up-dip propagation of episodic SSEs systematically decreases the fault strength due to a continuous accumulation and release of fluid pressure within overpressured subducting interface, thus affecting the timing of large megathrust earthquakes. These results contribute to improve our understanding of the physical driving forces underlying the interplay between seismic and aseismic slip, and demonstrate that slow slip events may prove useful for short-term earthquake forecasts.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
V. M. Cruz-Atienza ◽  
J. Tago ◽  
C. Villafuerte ◽  
M. Wei ◽  
R. Garza-Girón ◽  
...  

AbstractEither the triggering of large earthquakes on a fault hosting aseismic slip or the triggering of slow slip events (SSE) by passing seismic waves involve seismological questions with important hazard implications. Just a few observations plausibly suggest that such interactions actually happen in nature. In this study we show that three recent devastating earthquakes in Mexico are likely related to SSEs, describing a cascade of events interacting with each other on a regional scale via quasi-static and/or dynamic perturbations across the states of Guerrero and Oaxaca. Such interaction seems to be conditioned by the transient memory of Earth materials subject to the “traumatic” stress produced by seismic waves of the great 2017 (Mw8.2) Tehuantepec earthquake, which strongly disturbed the SSE cycles over a 650 km long segment of the subduction plate interface. Our results imply that seismic hazard in large populated areas is a short-term evolving function of seismotectonic processes that are often observable.


2020 ◽  
Author(s):  
Jorge Jara ◽  
Alpay Ozdemir ◽  
Angelique Benoit ◽  
Romain Jolivet ◽  
Ziyadin Çakir ◽  
...  

<p>Many geodetic evidence suggest aseismic slip along active faults is more common than previously thought. Furthermore, aseismic slip during the interseismic period seems to be made of intermittent slow slip events, corresponding to episodes of loading and releasing of tectonic stress over time. However, although our capabilities of detection and location of aseismic deformation have significantly increased together with the growth in available geodetic data, the physical mechanisms governing slow slip remain unknown.</p><p>We explore the spatial and temporal behavior of aseismic deformation in the vicinity of the small town of Ismetpasa, located along the central section of the North Anatolian Fault (Turkey). We combine InSAR and GNSS data acquired over the last 10 years to locate and quantify aseismic slip in the subsurface. We process SAR images (ALOS and Sentinel-1) acquired from 2007 to 2018 to build time series of ground deformation and maps of ground velocity. We confirm the presence of a 100 km-long creeping section, at rates of 10-20 mm/yr. Along this section, slip is not constant and decreases over time as formerly observed over the last 60 years. Furthermore, via a detailed analysis of our geodetic time series, we detect 3 major episodes of aseismic slip between 2015 and 2018, with durations ranging from 6 months to 1 year and magnitudes between 4.6 - 5.2. These results are compared with time series obtained from a network of GNSS permanent stations we have installed in the region (17 stations, period 2016 - 2019). As a conclusion, aseismic slip along this section of the North Anatolian Fault is characterized by slow slip events rather than by a constant, steady-state aseismic slip rate. We discuss the potential implications in terms of mechanics of slow slip along the NAF.</p>


2020 ◽  
Author(s):  
Josef Horálek ◽  
Hana Jakoubková ◽  
Jana Doubravová ◽  
Martin Bachura

<p>Earthquake swarms occurred worldwide in diverse geological units, however, their origin is still unclear. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe, South-West Iceland is characterized by intense interplate earthquake swarms. Both these areas exhibit high activity of crustal fluids.</p><p>We investigated earthquake swarms from W-Bohemia and from different areas in SW-Iceland: the Hengill volcanic complex, Ölfus transition zone (the edge of the SISZ), and Reykjanes Peninsula, from the perspective of their magnitude-time development, seismic moment release with time, the magnitude-frequency distribution and distribution of the inter-event times, and the space and time distribution of the foci. The aim was to determine the swarm characteristics that are dependent or vice-versa independent on the tectonic environment, and also the characteristics which should help us to distinguish more precisely earthquake swarms from mainshock-aftershock sequences.</p><p>We found that the frequency-magnitude (b-values) and inter-event-time distributions are similar for both areas, while total seismic moment release and its rate are much larger for the SW Icelandic activities compared to the W-Bohemia ones. One dominant short-term swarm phase with one or a few dominant events in which significant part of M<sub>0tot</sub> released, is typical of the SW Icelandic swarms, whereas the W-Bohemia swarms are characterised by stepwise seismic moment release, which is manifested by several swarm phases. MFDs of the SW-Iceland swarms indicate significantly lower a-value (number of M<sub>L</sub> > 0 evens), particularly of those on the Reykjanes Peninsula, compared to W-Bohemia swarms; it is due to the fact that considerable amount of M<sub>0tot </sub>released in quasi-mainshocks and the rest in aftershocks; lower a-value was also found for the W-Bohemian mainshock-aftershock sequence in 2014. The W-Bohemian swarms took place in a bounded focal zone consisting of several fault segments but the SW-Icelandic swarms correspond well to tectonic structures along the Mid Atlantic Ridge. We conclude that most of the W-Bohemia earthquake swarms were series of subswarms with one or more embedded mainshock-aftershock sequences, while the SW-Icelandic swarms (particularly those on the Reykjanes Peninsula appear to be a transition between earthquake swarm and mainshock-aftershock sequence. The W-Bohemia and SW-Iceland focal zones are characterized by complex system of short, differently oriented faults/fault segments; interestingly, the W-Bohemia and some SW-Icelandic focal zones exhibit coexistence of faults susceptible to earthquake swarms and differently oriented faults predisposed to common earthquakes (mainshock-aftershocks).</p>


Sign in / Sign up

Export Citation Format

Share Document