Gene Expression Profiles in the Brain Predict Behavior in Individual Honey Bees

Science ◽  
2003 ◽  
Vol 302 (5643) ◽  
pp. 296-299 ◽  
Author(s):  
C. W. Whitfield
2009 ◽  
Vol 84 (4) ◽  
pp. 271-286 ◽  
Author(s):  
Miyuki Shimada ◽  
Satomi Kameo ◽  
Norio Sugawara ◽  
Kozue Yaginuma-Sakurai ◽  
Naoyuki Kurokawa ◽  
...  

2004 ◽  
Vol 97 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Lichao Chen ◽  
Deborah Duricka ◽  
Scott Nelson ◽  
Sanjib Mukherjee ◽  
Stewart G. Bohnet ◽  
...  

Influenza viral infection induces increases in non-rapid eye movement sleep and decreases in rapid eye movement sleep in normal mice. An array of cytokines is produced during the infection, and some of them, such as IL-1β and TNF-α, are well-defined somnogenic substances. It is suggested that nitric oxide (NO) may mediate the sleep-promoting effects of these cytokines. In this study, we use mice with targeted disruptions of either the neuronal NO synthase (nNOS) or the inducible NO synthase (iNOS) gene, commonly referred to as nNOS or iNOS knockouts (KOs), to investigate sleep changes after influenza viral challenge. We report that the magnitude of viral-induced non-rapid eye movement sleep responses in both nNOS KOs and iNOS KOs was less than that of their respective controls. In addition, the duration of rapid eye movement sleep in nNOS KO mice did not decrease compared with baseline values. All strains of mice had similar viral titers and cytokine gene expression profiles in the lungs. Virus was not isolated from the brains of any strain. However, gene expression in the brain stem differed between nNOS KOs and their controls: mRNA for the interferon-induced gene 2′,5′-oligoadenylate synthase 1a was elevated in nNOS KOs relative to their controls at 15 h, and IL-1β mRNA was elevated in nNOS KOs relative to their controls at 48 h. Our results suggest that NO synthesized by both nNOS and iNOS plays a role in virus-induced sleep changes and that nNOS may modulate cytokine expression in the brain.


2011 ◽  
Vol 13 (3) ◽  
pp. 215-223 ◽  
Author(s):  
Joonghoon Park ◽  
Liangxue Lai ◽  
Melissa Samuel ◽  
David Wax ◽  
Richard S. Bruno ◽  
...  

2021 ◽  
Vol 22 (18) ◽  
pp. 9891
Author(s):  
Eimi Yamaguchi ◽  
Tatsuya Akutsu ◽  
Jose C. Nacher

Recently, network controllability studies have proposed several frameworks for the control of large complex biological networks using a small number of life molecules. However, age-related changes in the brain have not been investigated from a controllability perspective. In this study, we compiled the gene expression profiles of four normal brain regions from individuals aged 20–99 years and generated dynamic probabilistic protein networks across their lifespan. We developed a new algorithm that efficiently identified critical proteins in probabilistic complex networks, in the context of a minimum dominating set controllability model. The results showed that the identified critical proteins were significantly enriched with well-known ageing genes collected from the GenAge database. In particular, the enrichment observed in replicative and premature senescence biological processes with critical proteins for male samples in the hippocampal region led to the identification of possible new ageing gene candidates.


2010 ◽  
Vol 28 (15_suppl) ◽  
pp. e12503-e12503
Author(s):  
D. Dréau ◽  
J. M. Eddy ◽  
K. Thompson ◽  
J. Weller ◽  
J. Dollar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document