The Dynamics of Cooperative Bacterial Virulence in the Field

Science ◽  
2012 ◽  
Vol 337 (6090) ◽  
pp. 85-88 ◽  
Author(s):  
Ben Raymond ◽  
Stuart A. West ◽  
Ashleigh S. Griffin ◽  
Michael B. Bonsall

Laboratory experiments have shown that the fitness of microorganisms can depend on cooperation between cells. Although this insight has revolutionized our understanding of microbial life, results from artificial microcosms have not been validated in complex natural populations. We investigated the sociality of essential virulence factors (crystal toxins) in the pathogenBacillus thuringiensisusing diamondback moth larvae (Plutella xylostella) as hosts. We show that toxin production is cooperative, and in a manipulative field experiment, we observed persistent high relatedness and frequency- and density-dependent selection, which favor stable cooperation. Conditions favoring social virulence can therefore persist in the face of natural population processes, and social interactions (rapid cheat invasion) may account for the rarity of natural disease outbreaks caused byB. thuringiensis.

2021 ◽  
Vol 9 (6) ◽  
pp. 1128
Author(s):  
Kathleen Cusick ◽  
Gabriel Duran

Saxitoxin (STX) is a secondary metabolite and potent neurotoxin produced by several genera of harmful algal bloom (HAB) marine dinoflagellates. The basis for variability in STX production within natural bloom populations is undefined as both toxic and non-toxic strains (of the same species) have been isolated from the same geographic locations. Pyrodinium bahamense is a STX-producing bioluminescent dinoflagellate that blooms along the east coast of Florida as well as the bioluminescent bays in Puerto Rico (PR), though no toxicity reports exist for PR populations. The core genes in the dinoflagellate STX biosynthetic pathway have been identified, and the sxtA4 gene is essential for toxin production. Using sxtA4 as a molecular proxy for the genetic capacity of STX production, we examined sxtA4+ and sxtA4- genotype frequency at the single cell level in P. bahamense populations from different locations in the Indian River Lagoon (IRL), FL, and Mosquito Bay (MB), a bioluminescent bay in PR. Multiplex PCR was performed on individual cells with Pyrodinium-specific primers targeting the 18S rRNA gene and sxtA4. The results reveal that within discrete natural populations of P. bahamense, both sxtA4+ and sxtA4- genotypes occur, and the sxtA4+ genotype dominates. In the IRL, the frequency of the sxtA4+ genotype ranged from ca. 80–100%. In MB, sxtA4+ genotype frequency ranged from ca 40–66%. To assess the extent of sxtA4 variation within individual cells, sxtA4 amplicons from single cells representative of the different sampling sites were cloned and sequenced. Overall, two variants were consistently obtained, one of which is likely a pseudogene based on alignment with cDNA sequences. These are the first data demonstrating the existence of both genotypes in natural P. bahamense sub-populations, as well as sxtA4 presence in P. bahamense from PR. These results provide insights on underlying genetic factors influencing the potential for toxin variability among natural sub-populations of HAB species and highlight the need to study the genetic diversity within HAB sub-populations at a fine level in order to identify the molecular mechanisms driving HAB evolution.


Author(s):  
Xiaoli Tian ◽  
Qian Li

With more social interactions shifting to online venues, the different attributes of major social media sites in China influence how interpersonal interactions are carried out. Despite the lack of physical co-presence online, face culture is extended to online spaces. On social media, Chinese users tend to protect their own face, give face to others, and avoid discrediting the face of others, especially when their online and offline networks overlap. This chapter also discusses the different methods used to study facework online and offline and how facework is studied in different parts of the world. It concludes with a brief discussion of how sociological research has contributed to the study of social media in China and directions for future research.


2019 ◽  
Author(s):  
Melanie J. Heckwolf ◽  
Britta S. Meyer ◽  
Robert Häsler ◽  
Marc P. Höppner ◽  
Christophe Eizaguirre ◽  
...  

AbstractWhile environmentally inducible epigenetic marks are discussed as one mechanism of transgenerational plasticity, environmentally stable epigenetic marks emerge randomly. When resulting in variable phenotypes, stable marks can be targets of natural selection analogous to DNA sequence-based adaptation processes. We studied both postulated pathways in natural populations of three-spined sticklebacks (Gasterosteus aculeatus) and sequenced their methylomes and genomes across a salinity cline. Consistent with local adaptation, populations showed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. In a two-generation experiment, 62% of these pop-DMS were insensitive to salinity manipulation, suggesting that they could be stable targets for natural selection. Two-thirds of the remaining inducible pop-DMS became more similar to patterns detected in wild populations from the corresponding salinity, and this pattern accentuated over consecutive generations, indicating a mechanism of adaptive transgenerational plasticity. Natural DNA methylation patterns can thus be attributed to two epigenetic pathways underlying the rapid emergence of adaptive phenotypes in the face of environmental change.


COVID-19 has become a pandemic affecting the most of countries in the world. One of the most difficult decisions doctors face during the Covid-19 epidemic is determining which patients will stay in hospital, and which are safe to recover at home. In the face of overcrowded hospital capacity and an entirely new disease with little data-based evidence for diagnosis and treatment, the old rules for determining which patients should be admitted have proven ineffective. But machine learning can help make the right decision early, save lives and lower healthcare costs. So, there is therefore an urgent and imperative need to collect data describing clinical presentations, risks, epidemiology and outcomes. On the other side, artificial intelligence(AI) and machine learning(ML) are considered a strong firewall against outbreaks of diseases and epidemics due to its ability to quickly detect, examine and diagnose these diseases and epidemics.AI is being used as a tool to support the fight against the epidemic that swept the entire world since the beginning of 2020.. This paper presents the potential for using data engineering, ML and AI to confront the Coronavirus, predict the evolution of disease outbreaks, and conduct research in order to develop a vaccine or effective treatment that protects humanity from these deadly diseases.


2018 ◽  
Vol 23 (7) ◽  
pp. 418-418
Author(s):  
Olivia Walter
Keyword(s):  

2020 ◽  
Vol 375 (1800) ◽  
pp. 20190268 ◽  
Author(s):  
Camille Ferdenzi ◽  
Stéphane Richard Ortegón ◽  
Sylvain Delplanque ◽  
Nicolas Baldovini ◽  
Moustafa Bensafi

Many species use chemicals to communicate. In humans, there is increasing evidence that chemicals conveyed by the body are extremely important in interpersonal relationships. However, many aspects of chemical communication remain to be explored to fully understand this function in humans. The aim of this article is to identify relevant challenges in this field, with a focus on human attractiveness in the context of reproduction, and to put forward roadmaps for future studies that will hopefully extend to a wider range of social interactions. The first challenge consists in not being limited to body (mal)odours from the axilla. Preliminary data on how the odour of the face and head is perceived are presented. Second, there is a crucial need to increase our knowledge of the chemical bases of human chemical communication. Third, cross-cultural approaches must not be overlooked, because they have a major input in understanding the universal and culture-specific aspects of chemical communication. Fourth, the influence of specific cultural practices such as contraceptive and fragrance use is likely to be prominent and, therefore, needs to be well described. The fifth and last challenge for research projects in this field is the integration of different disciplines such as behavioural sciences, social sciences, neurosciences and microbiology. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’.


2020 ◽  
Author(s):  
Caroline R. Amoroso ◽  
Janis Antonovics

AbstractBehavioral resistance to parasites is widespread in animals, yet little is known about the evolutionary dynamics that have shaped these strategies. We show that theory developed for the evolution of physiological parasite resistance can only be applied to behavioral resistance under limited circumstances. We find that accounting explicitly for the behavioral processes, including the detectability of infected individuals, leads to novel dynamics that are strongly dependent on the nature of the costs and benefits of social interactions. As with physiological resistance, the evolutionary dynamics can also lead to mixed strategies that balance the costs of disease risk and the benefits of social interaction, with implications for understanding avoidance strategies in human disease outbreaks.


2020 ◽  
Vol 117 (41) ◽  
pp. 25237-25245 ◽  
Author(s):  
Manouk Abkarian ◽  
Simon Mendez ◽  
Nan Xue ◽  
Fan Yang ◽  
Howard A. Stone

Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.g., the “6-foot rule.” Here we analyze flows during breathing and speaking, including phonetic features, using orders-of-magnitude estimates, numerical simulations, and laboratory experiments. We document the spatiotemporal structure of the expelled airflow. Phonetic characteristics of plosive sounds like “P” lead to enhanced directed transport, including jet-like flows that entrain the surrounding air. We highlight three distinct temporal scaling laws for the transport distance of exhaled material including 1) transport over a short distance (<0.5 m) in a fraction of a second, with large angular variations due to the complexity of speech; 2) a longer distance, ∼1 m, where directed transport is driven by individual vortical puffs corresponding to plosive sounds; and 3) a distance out to about 2 m, or even farther, where sequential plosives in a sentence, corresponding effectively to a train of puffs, create conical, jet-like flows. The latter dictates the long-time transport in a conversation. We believe that this work will inform thinking about the role of ventilation, aerosol transport in disease transmission for humans and other animals, and yield a better understanding of linguistic aerodynamics, i.e., aerophonetics.


2020 ◽  
Vol 37 (6) ◽  
pp. 1790-1808 ◽  
Author(s):  
Jeffrey R Adrion ◽  
Jared G Galloway ◽  
Andrew D Kern

Abstract Accurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history. Here, we describe recombination landscape estimation using recurrent neural networks (ReLERNN), a deep learning method for estimating a genome-wide recombination map that is accurate even with small numbers of pooled or individually sequenced genomes. Rather than use summaries of linkage disequilibrium as its input, ReLERNN takes columns from a genotype alignment, which are then modeled as a sequence across the genome using a recurrent neural network. We demonstrate that ReLERNN improves accuracy and reduces bias relative to existing methods and maintains high accuracy in the face of demographic model misspecification, missing genotype calls, and genome inaccessibility. We apply ReLERNN to natural populations of African Drosophila melanogaster and show that genome-wide recombination landscapes, although largely correlated among populations, exhibit important population-specific differences. Lastly, we connect the inferred patterns of recombination with the frequencies of major inversions segregating in natural Drosophila populations.


2015 ◽  
Vol 11 (2) ◽  
pp. 20140934 ◽  
Author(s):  
Adela M. Luján ◽  
Pedro Gómez ◽  
Angus Buckling

While social interactions play an important role for the evolution of bacterial siderophore production in vitro , the extent to which siderophore production is a social trait in natural populations is less clear. Here, we demonstrate that siderophores act as public goods in a natural physical environment of Pseudomonas fluorescens : soil-based compost. We show that monocultures of siderophore producers grow better than non-producers in soil, but non-producers can exploit others' siderophores, as shown by non-producers' ability to invade populations of producers when rare. Despite this rare advantage, non-producers were unable to outcompete producers, suggesting that producers and non-producers may stably coexist in soil. Such coexistence is predicted to arise from the spatial structure associated with soil, and this is supported by increased fitness of non-producers when grown in a shaken soil–water mix. Our results suggest that both producers and non-producers should be observed in soil, as has been observed in marine environments and in clinical populations.


Sign in / Sign up

Export Citation Format

Share Document