scholarly journals Optical skyrmion lattice in evanescent electromagnetic fields

Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. 993-996 ◽  
Author(s):  
S. Tsesses ◽  
E. Ostrovsky ◽  
K. Cohen ◽  
B. Gjonaj ◽  
N. H. Lindner ◽  
...  

Topological defects play a key role in a variety of physical systems, ranging from high-energy to solid-state physics. A skyrmion is a type of topological defect that has shown promise for applications in the fields of magnetic storage and spintronics. We show that optical skyrmion lattices can be generated using evanescent electromagnetic fields and demonstrate this using surface plasmon polaritons, imaged by phase-resolved near-field optical microscopy. We show how the optical skyrmion lattice exhibits robustness to imperfections while the topological domain walls in the lattice can be continuously tuned, changing the spatial structure of the skyrmions from bubble type to Néel type. Extending the generation of skyrmions to photonic systems provides various possibilities for applications in optical information processing, transfer, and storage.

2004 ◽  
Vol 19 (04) ◽  
pp. 575-592 ◽  
Author(s):  
D. BAZEIA ◽  
A. S. INÁCIO ◽  
L. LOSANO

We investigate several models described by real scalar fields, searching for topological defects, and investigating their linear stability. We also find bosonic zero modes and examine the thermal corrections at the one-loop level. The classical investigations are of direct interest to high energy physics and to applications in condensed matter, in particular to spatially extended systems where fronts and interfaces separating different phase states may appear. The thermal investigations show that the finite temperature corrections that appear in a specific model induce a second-order phase transition in the system, although the thermal effects do not suffice to fully restore the symmetry at high temperature.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zi-Lan Deng ◽  
Tan Shi ◽  
Alex Krasnok ◽  
Xiangping Li ◽  
Andrea Alù

AbstractOptical skyrmions have recently been constructed by tailoring vectorial near-field distributions through the interference of multiple surface plasmon polaritons, offering promising features for advanced information processing, transport and storage. Here, we provide experimental demonstration of electromagnetic skyrmions based on magnetic localized spoof plasmons (LSP) showing large topological robustness against continuous deformations, without stringent external interference conditions. By directly measuring the spatial profile of all three vectorial magnetic fields, we reveal multiple π-twist target skyrmion configurations mapped to multi-resonant near-equidistant LSP eigenmodes. The real-space skyrmion topology is robust against deformations of the meta-structure, demonstrating flexible skyrmionic textures for arbitrary shapes. The observed magnetic LSP skyrmions pave the way to ultra-compact and robust plasmonic devices, such as flexible sensors, wearable electronics and ultra-compact antennas.


2021 ◽  
Vol 13 (3) ◽  
pp. 1360
Author(s):  
Teodora M. Șoimoșan ◽  
Ligia M. Moga ◽  
Livia Anastasiu ◽  
Daniela L. Manea ◽  
Aurica Căzilă ◽  
...  

Harnessing renewable energy sources (RES) using hybrid systems for buildings is almost a deontological obligation for engineers and researchers in the energy field, and increasing the percentage of renewables within the energy mix represents an important target. In crowded urban areas, on-site energy production and storage from renewables can be a real challenge from a technical point of view. The main objectives of this paper are quantification of the impact of the consumer’s profile on overall energy efficiency for on-site storage and final use of solar thermal energy, as well as developing a multicriteria assessment in order to provide a methodology for selection in prioritizing investments. Buildings with various consumption profiles lead to achieving different values of performance indicators in similar configurations of storage and energy supply. In this regard, an analysis of the consumption profile’s impact on overall energy efficiency, achieved in the case of on-site generation and storage of solar thermal energy, was performed. The obtained results validate the following conclusion: On-site integration of solar systems allowed the consumers to use RES at the desired coverage rates, while restricted by on-site available mounting areas for solar fields and thermal storage, under conditions of high energy efficiencies. In order to segregate the results and support optimal selection, a multicriteria analysis was carried out, having as the main criteria the energy efficiency indicators achieved by hybrid heating systems.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13487-13493 ◽  
Author(s):  
Jianjun Chen ◽  
Chengwei Sun ◽  
Hongyun Li ◽  
Qihuang Gong

Based on the near-field interference of two slit apertures in a subwavelength plasmonic waveguide, an ultra-broadband unidirectional SPP launcher beyond the diffraction limit was experimentally realized. This ultra-small SPP launcher has important applications in high-integration plasmonic circuits.


Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Frederik Walla ◽  
Matthias M. Wiecha ◽  
Nicolas Mecklenbeck ◽  
Sabri Beldi ◽  
Fritz Keilmann ◽  
...  

AbstractWe investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.


2013 ◽  
Vol 06 (01) ◽  
pp. 1330001 ◽  
Author(s):  
JING XU ◽  
DAE HOE LEE ◽  
YING SHIRLEY MENG

Significant progress has been achieved in the research on sodium intercalation compounds as positive electrode materials for Na-ion batteries. This paper presents an overview of the breakthroughs in the past decade for developing high energy and high power cathode materials. Two major classes, layered oxides and polyanion compounds, are covered. Their electrochemical performance and the related crystal structure, solid state physics and chemistry are summarized and compared.


Sign in / Sign up

Export Citation Format

Share Document