scholarly journals Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes

Science ◽  
2019 ◽  
Vol 365 (6450) ◽  
pp. eaav9518 ◽  
Author(s):  
Ross Nortley ◽  
Nils Korte ◽  
Pablo Izquierdo ◽  
Chanawee Hirunpattarasilp ◽  
Anusha Mishra ◽  
...  

Cerebral blood flow is reduced early in the onset of Alzheimer’s disease (AD). Because most of the vascular resistance within the brain is in capillaries, this could reflect dysfunction of contractile pericytes on capillary walls. We used live and rapidly fixed biopsied human tissue to establish disease relevance, and rodent experiments to define mechanism. We found that in humans with cognitive decline, amyloid β (Aβ) constricts brain capillaries at pericyte locations. This was caused by Aβ generating reactive oxygen species, which evoked the release of endothelin-1 (ET) that activated pericyte ETA receptors. Capillary, but not arteriole, constriction also occurred in vivo in a mouse model of AD. Thus, inhibiting the capillary constriction caused by Aβ could potentially reduce energy lack and neurodegeneration in AD.

2021 ◽  
pp. 1-14
Author(s):  
Christiana Bjorkli ◽  
Claire Louet ◽  
Trude Helen Flo ◽  
Mary Hemler ◽  
Axel Sandvig ◽  
...  

Background: Preclinical models of Alzheimer’s disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. Objective: An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. Methods: Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. Results: We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. Conclusion: Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).


2015 ◽  
Vol 43 (5) ◽  
pp. 920-923 ◽  
Author(s):  
Hongyun Li ◽  
Tim Karl ◽  
Brett Garner

ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) identify ABCA7 single nt polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk. It is now important to understand the true function of ABCA7 in the AD context. We have begun to address this using in vitro and in vivo AD models. Our initial studies showed that transient overexpression of ABCA7 in Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) resulted in an approximate 50% inhibition in the production of the AD-related amyloid-β (Aβ) peptide as compared with mock-transfected cells. This increased ABCA7 expression was also associated with alterations in other markers of APP processing and an accumulation of cellular APP. To probe for a function of ABCA7 in vivo, we crossed Abca7−/− mice with J20 mice, an amyloidogenic transgenic AD mouse model [B6.Cg-Tg(PDGFB-APPSwInd)20Lms/J] expressing a mutant form of human APP bearing both the Swedish (K670N/M671L) and Indiana (V717F) familial AD mutations. We found that ABCA7 loss doubled insoluble Aβ levels and amyloid plaques in the brain. This did not appear to be related to changes in APP processing (C-terminal fragment analysis), which led us to assess other mechanism by which ABCA7 may modulate Aβ homoeostasis. As we have shown that microglia express high levels of ABCA7, we examined a role for ABCA7 in the phagocytic clearance of Aβ. Our data indicated that the capacity for bone marrow-derived macrophages derived from Abca7−/− mice to phagocytose Aβ was reduced by 51% compared with wild-type (WT) mice. This suggests ABCA7 plays a role in the regulation of Aβ homoeostasis in the brain and that this may be related to Aβ clearance by microglia.


2020 ◽  
Author(s):  
Leon M Aksman ◽  
Neil P Oxtoby ◽  
Marzia A Scelsi ◽  
Peter A Wijeratne ◽  
Alexandra L Young ◽  
...  

Alzheimer's disease (AD) is marked by the spread of misfolded amyloid-β and tau proteins throughout the brain. While it is commonly believed that amyloid-β abnormality drives the cascade of AD pathogenesis, several in vivo and post mortem studies indicate that in some subjects localized tau-based neurofibrillary tangles precede amyloid-β pathology. This suggests that there may be multiple distinct subtypes of protein aggregation pathways within AD, with potentially different demographic, cognitive and comorbidity profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post mortem immunohistochemistry and in vivo positron emission tomography (PET) and cerebrospinal fluid (CSF) based measures of protein pathologies in two large observational cohorts. We consistently identified both amyloid-first and tau-first AD subtypes, where tau-first subjects had higher levels of soluble TREM2 compared to amyloid-first subjects. Our work provides insight into AD progression that may be valuable for interventional trials targeting amyloid-β and tau.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Deregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTL in vivo over-expression has a mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7630
Author(s):  
Marielle Drommi ◽  
Clément Rulmont ◽  
Charlène Esmieu ◽  
Christelle Hureau

We here report the synthesis of three new hybrid ligands built around the phenanthroline scaffold and encompassing two histidine-like moieties: phenHH, phenHGH and H’phenH’, where H correspond to histidine and H’ to histamine. These ligands were designed to capture Cu(I/II) from the amyloid-β peptide and to prevent the formation of reactive oxygen species produced by amyloid-β bound copper in presence of physiological reductant (e.g., ascorbate) and dioxygen. The amyloid-β peptide is a well-known key player in Alzheimer’s disease, a debilitating and devasting neurological disorder the mankind has to fight against. The Cu-Aβ complex does participate in the oxidative stress observed in the disease, due to the redox ability of the Cu(I/II) ions. The complete characterization of the copper complexes made with phenHH, phenHGH and H’phenH’ is reported, along with the ability of ligands to remove Cu from Aβ, and to prevent the formation of reactive oxygen species catalyzed by Cu and Cu-Aβ, including in presence of zinc, the second metal ions important in the etiology of Alzheimer’s disease. The importance of the reduced state of copper, Cu(I), in the prevention and arrest of ROS is mechanistically described with the help of cyclic voltammetry experiments.


2020 ◽  
Vol 17 (4) ◽  
pp. 393-406
Author(s):  
Gregory Z. Ferl ◽  
Reina N. Fuji ◽  
Jasvinder K. Atwal ◽  
Tony Sun ◽  
Saroja Ramanujan ◽  
...  

Background: Anti-amyloid-β (Aβ) monoclonal antibodies (mAbs) are currently in development for treating Alzheimer’s disease. Objectives: To address the complexity of Aβ target engagement profiles, improve the understanding of crenezumab Pharmacokinetics (PK) and Aβ Pharmacodynamics (PD) in the brain, and facilitate comparison of anti-Aβ therapies with different binding characteristics. Methods: A mechanistic mathematical model was developed describing the distribution, elimination, and binding kinetics of anti-Aβ mAbs and Aβ (monomeric and oligomeric forms of Aβ1-40 and Aβ1-42) in the brain, Cerebrospinal Fluid (CSF), and plasma. Physiologically meaningful values were assigned to the model parameters based on the previous data, with remaining parameters fitted to clinical measurements of Aβ concentrations in CSF and plasma, and PK/PD data of patients undergoing anti-Aβ therapy. Aβ target engagement profiles were simulated using a Monte Carlo approach to explore the impact of biological uncertainty in the model parameters. Results: Model-based estimates of in vivo affinity of the antibody to monomeric Aβ were qualitatively consistent with the previous data. Simulations of Aβ target engagement profiles captured observed mean and variance of clinical PK/PD data. Conclusion: This model is useful for comparing target engagement profiles of different anti-Aβ therapies and demonstrates that 60 mg/kg crenezumab yields a significant increase in Aβ engagement compared with lower doses of solanezumab, supporting the selection of 60 mg/kg crenezumab for phase 3 studies. The model also provides evidence that the delivery of sufficient quantities of mAb to brain interstitial fluid is a limiting step with respect to the magnitude of soluble Aβ oligomer neutralization.


2020 ◽  
Vol 13 ◽  
Author(s):  
Madeleine R. Brown ◽  
Sheena E. Radford ◽  
Eric W. Hewitt

Amyloid plaques are a pathological hallmark of Alzheimer’s disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer’s disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer’s disease.


2020 ◽  
Vol 295 (32) ◽  
pp. 11231-11245
Author(s):  
Fatema B. Salem ◽  
Wyatt P. Bunner ◽  
Vishwanath V. Prabhu ◽  
Abu-Bakarr Kuyateh ◽  
Collin T. O'Bryant ◽  
...  

The hallmarks of neurodegenerative diseases, including neural fibrils, reactive oxygen species, and cofilin–actin rods, present numerous challenges in the development of in vivo diagnostic tools. Biomarkers such as β-amyloid (Aβ) fibrils and Tau tangles in Alzheimer's disease are accessible only via invasive cerebrospinal fluid assays, and reactive oxygen species can be fleeting and challenging to monitor in vivo. Although remaining a challenge for in vivo detection, the protein–protein interactions underlying these disease-specific biomarkers present opportunities for the engineering of in vitro pathology-sensitive biosensors. These tools can be useful for investigating early stage events in neurodegenerative diseases in both cellular and animal models and may lead to clinically useful reagents. Here, we report a light- and cellular stress–gated protein switch based on cofilin–actin rod formation, occurring in stressed neurons in the Alzheimer's disease brain and following ischemia. By coupling the stress-sensitive cofilin–actin interaction with the light-responsive Cry2-CIB blue-light switch, referred to hereafter as the CofActor, we accomplished both light- and energetic/oxidative stress–gated control of this interaction. Site-directed mutagenesis of both cofilin and actin revealed residues critical for sustaining or abrogating the light- and stress-gated response. Of note, the switch response varied depending on whether cellular stress was generated via glycolytic inhibition or by both glycolytic inhibition and azide-induced ATP depletion. We also demonstrate light- and cellular stress–gated switch function in cultured hippocampal neurons. CofActor holds promise for the tracking of early stage events in neurodegeneration and for investigating actin's interactions with other proteins during cellular stress.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Simone M. Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. Methods A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. Results Here, we report that CERTL binds to APP, modifies Aβ aggregation, and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation, and modulates microglia by decreasing their pro-inflammatory phenotype. Conclusion Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document