Blocking α4β7 integrin binding to SIV does not improve virologic control

Science ◽  
2019 ◽  
Vol 365 (6457) ◽  
pp. 1033-1036 ◽  
Author(s):  
Nami Iwamoto ◽  
Rosemarie D. Mason ◽  
Kaimei Song ◽  
Jason Gorman ◽  
Hugh C. Welles ◽  
...  

A study in nonhuman primates reported that infusions of an antibody against α4β7 integrin, in combination with antiretroviral therapy, showed consistent, durable control of simian immunodeficiency virus (SIV) in rhesus macaques. The antibody used has pleiotropic effects, so we set out to gain insight into the underlying mechanism by comparing this treatment to treatment with non-neutralizing monoclonal antibodies against the SIV envelope glycoprotein that only block α4β7 binding to SIV Env but have no other host-directed effects. Similar to the initial study, we used an attenuated strain of SIV containing a stop codon in nef. The study used 30 macaques that all began antiretroviral therapy and then were divided into five groups to receive different antibody treatments. Unlike the published report, we found no sustained virologic control by these treatments in vivo.

2018 ◽  
Vol 92 (14) ◽  
Author(s):  
David Palesch ◽  
Steven E. Bosinger ◽  
Maud Mavigner ◽  
James M. Billingsley ◽  
Cameron Mattingly ◽  
...  

ABSTRACT The major obstacle to human immunodeficiency type 1 (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and causes rapid viral rebound if treatment is interrupted. Type I interferons are immunomodulatory cytokines that induce antiviral factors and have been evaluated for the treatment of HIV-infected individuals, resulting in moderate reduction of viremia and inconclusive data about their effect on reservoir size. Here, we assessed the potential of pegylated IFN-α2a (pIFN-α2a) to reduce the viral reservoir in simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques (RMs). We found that pIFN-α2a treatment of animals in which virus replication is effectively suppressed with ART is safe and well tolerated, as no major clinical side effects were observed. By monitoring the cellular immune response during this intervention, we established that pIFN-α2a administration is not associated with either CD4 + T cell depletion or increased immune activation. Importantly, we found that interferon-stimulated genes (ISGs) were significantly upregulated in IFN-treated RMs compared to control animals, confirming that pIFN-α2a is bioactive in vivo . To evaluate the effect of pIFN-α2a administration on the viral reservoir in CD4 + T cells, we performed cell-associated proviral SIV DNA measurements in multiple tissues and assessed levels of replication-competent virus by a quantitative viral outgrowth assay (QVOA). These analyses failed to reveal any significant difference in reservoir size between IFN-treated and control animals. In summary, our data suggest that short-term type I interferon treatment in combination with suppressive ART is not sufficient to induce a significant reduction of the viral reservoir in SIV-infected RMs. IMPORTANCE The potential of type I interferons to reduce the viral reservoir has been recently studied in clinical trials in HIV-infected humans. However, given the lack of mechanistic data and the potential for safety concerns, a more comprehensive testing of IFN treatment in vivo in SIV-infected RMs is critical to provide rationale for further development of this intervention in humans. Utilizing the SIV/RM model in which virus replication is suppressed with ART, we addressed experimental limitations of previous human studies, in particular the lack of a control group and specimen sampling limited to blood. Here, we show by rigorous testing of blood and lymphoid tissues that virus replication and reservoir size were not significantly affected by pIFN-α2a treatment in SIV-infected, ART-treated RMs. This suggests that intensified and/or prolonged IFN treatment regimens, possibly in combination with other antilatency agents, are necessary to effectively purge the HIV/SIV reservoir under ART.


2001 ◽  
Vol 75 (1) ◽  
pp. 278-291 ◽  
Author(s):  
Patricia N. Fultz ◽  
Patricia J. Vance ◽  
Michael J. Endres ◽  
Binli Tao ◽  
Jeffrey D. Dvorin ◽  
...  

ABSTRACT Attenuated simian immunodeficiency viruses (SIVs) have been described that produce low levels of plasma virion RNA and exhibit a reduced capacity to cause disease. These viruses are particularly useful in identifying viral determinants of pathogenesis. In the present study, we show that mutation of a highly conserved tyrosine (Tyr)-containing motif (Yxxφ) in the envelope glycoprotein (Env) cytoplasmic tail (amino acids YRPV at positions 721 to 724) can profoundly reduce the in vivo pathogenicity of SIVmac239. This domain constitutes both a potent endocytosis signal that reduces Env expression on infected cells and a sorting signal that directs Env expression to the basolateral surface of polarized cells. Rhesus macaques were inoculated with SIVmac239 control or SIVmac239 containing either a Tyr-721-to-Ile mutation (SIVmac239Y/I) or a deletion of Tyr-721 and the preceding glycine (ΔGY). To assess the in vivo replication competence, all viruses contained a stop codon innef that has been shown to revert during in vivo but not in vitro replication. All three control animals developed high viral loads and disease. One of two animals that received SIVmac239Y/I and two of three animals that received SIVmac239ΔGY remained healthy for up to 140 weeks with low to undetectable plasma viral RNA levels and normal CD4+ T-cell percentages. These animals exhibited ongoing viral replication as determined by detection of viral sequences and culturing of mutant viruses from peripheral blood mononuclear cells and persistent anti-SIV antibody titers. In one animal that received SIVmac239Y/I, the Ile reverted to a Tyr and was associated with a high plasma RNA level and disease, while one animal that received SIVmac239ΔGY also developed a high viral load that was associated with novel and possibly compensatory mutations in the TM cytoplasmic domain. In all control and experimental animals, the nefstop codon reverted to an open reading frame within the first 2 months of inoculation, indicating that the mutant viruses had replicated well enough to repair this mutation. These findings indicate that the Yxxφ signal plays an important role in SIV pathogenesis. Moreover, because mutations in this motif may attenuate SIV through mechanisms that are distinct from those caused by mutations in nef, this Tyr-based sorting signal represents a novel target for future models of SIV and human immunodeficiency virus attenuation that could be useful in new vaccine strategies.


2015 ◽  
Vol 60 (3) ◽  
pp. 1560-1572 ◽  
Author(s):  
Gregory Q. Del Prete ◽  
Kelli Oswald ◽  
Abigail Lara ◽  
Rebecca Shoemaker ◽  
Jeremy Smedley ◽  
...  

Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremiain vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n= 5) or saline (n= 3) starting 31 to 54 weeks after cART initiation.In vivoRMD treatment resulted in significant transient increases in acetylated histone levels in CD4+T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.


Science ◽  
2019 ◽  
Vol 365 (6457) ◽  
pp. 1029-1033 ◽  
Author(s):  
Peter Abbink ◽  
Noe B. Mercado ◽  
Joseph P. Nkolola ◽  
Rebecca L. Peterson ◽  
Hubert Tuyishime ◽  
...  

Sustained virologic control of human immunodeficiency virus type 1 (HIV-1) infection after discontinuation of antiretroviral therapy (ART) is a major goal of the HIV-1 cure field. A recent study reported that administration of an antibody against α4β7 induced durable virologic control after ART discontinuation in 100% of rhesus macaques infected with an attenuated strain of simian immunodeficiency virus (SIV) containing a stop codon in nef. We performed similar studies in 50 rhesus macaques infected with wild-type, pathogenic SIVmac251. In animals that initiated ART during either acute or chronic infection, anti-α4β7 antibody infusion had no detectable effect on the viral reservoir or viral rebound after ART discontinuation. These data demonstrate that anti-α4β7 antibody administration did not provide therapeutic efficacy in the model of pathogenic SIVmac251 infection of rhesus macaques.


2012 ◽  
Vol 86 (18) ◽  
pp. 9583-9589 ◽  
Author(s):  
Kathryn E. Stephenson ◽  
Hualin Li ◽  
Bruce D. Walker ◽  
Nelson L. Michael ◽  
Dan H. Barouch

A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8+T lymphocytes from vaccinated rhesus monkeys mediate viral inhibitionin vitroand whether these responses predict virologic control following SIV challenge. We observed that CD8+lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIVin vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4+and CD8+T lymphocyte responses. These findings demonstrate thatin vitroviral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates within vivovirologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Danwei Yu ◽  
Jing Xue ◽  
Huamian Wei ◽  
Zhe Cong ◽  
Ting Chen ◽  
...  

ABSTRACT We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance. IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0190908 ◽  
Author(s):  
Benjamin Bruno Policicchio ◽  
Paola Sette ◽  
Cuiling Xu ◽  
George Haret-Richter ◽  
Tammy Dunsmore ◽  
...  

2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Zachary Strongin ◽  
Luca Micci ◽  
Rémi Fromentin ◽  
Justin Harper ◽  
Julia McBrien ◽  
...  

ABSTRACT Antiretroviral therapy (ART) cannot eradicate human immunodeficiency virus (HIV) and a rapid rebound of virus replication follows analytical treatment interruption (ATI) in the vast majority of HIV-infected individuals. Sustained control of HIV replication without ART has been documented in a subset of individuals, defined as posttreatment controllers (PTCs). The key determinants of post-ART viral control remain largely unclear. Here, we identified 7 SIVmac239-infected rhesus macaques (RMs), defined as PTCs, who started ART 8 weeks postinfection, continued ART for >7 months, and controlled plasma viremia at <104 copies/ml for up to 8 months after ATI and <200 copies/ml at the latest time point. We characterized immunologic and virologic features associated with post-ART SIV control in blood, lymph node (LN), and colorectal (RB) biopsy samples compared to 15 noncontroller (NC) RMs. Before ART initiation, PTCs had higher CD4 T cell counts, lower plasma viremia, and SIV-DNA content in blood and LN compared to NCs, but had similar CD8 T cell function. While levels of intestinal CD4 T cells were similar, PTCs had higher frequencies of Th17 cells. On ART, PTCs had significantly lower levels of residual plasma viremia and SIV-DNA content in blood and tissues. After ATI, SIV-DNA content rapidly increased in NCs, while it remained stable or even decreased in PTCs. Finally, PTCs showed immunologic benefits of viral control after ATI, including higher CD4 T cell levels and reduced immune activation. Overall, lower plasma viremia, reduced cell-associated SIV-DNA, and preserved Th17 homeostasis, including at pre-ART, are the main features associated with sustained viral control after ATI in SIV-infected RMs. IMPORTANCE While effective, antiretroviral therapy is not a cure for HIV infection. Therefore, there is great interest in achieving viral remission in the absence of antiretroviral therapy. Posttreatment controllers represent a small subset of individuals who are able to control HIV after cessation of antiretroviral therapy, but characteristics associated with these individuals have been largely limited to peripheral blood analysis. Here, we identified 7 SIV-infected rhesus macaques that mirrored the human posttreatment controller phenotype and performed immunologic and virologic analysis of blood, lymph node, and colorectal biopsy samples to further understand the characteristics that distinguish them from noncontrollers. Lower viral burden and preservation of immune homeostasis, including intestinal Th17 cells, both before and after ART, were shown to be two major factors associated with the ability to achieve posttreatment control. Overall, these results move the field further toward understanding of important characteristics of viral control in the absence of antiretroviral therapy.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Liu ◽  
Jing Wang ◽  
Guifeng Sun ◽  
Qiong Wu ◽  
Ji Ma ◽  
...  

Abstract Background N6-Methyladenosine (m6A) modification has been implicated in many biological processes. It is important for the regulation of messenger RNA (mRNA) stability, splicing, and translation. However, its role in cancer has not been studied in detail. Here we investigated the biological role and underlying mechanism of m6A modification in hepatoblastoma (HB). Methods We used Reverse transcription quantitative real-time PCR (RT-qPCR) and Western blotting to determine the expression of m6A related factors. And we clarified the effects of these factors on HB cells using cell proliferation assay, colony formation, apoptotic assay. Then we investigated of methyltransferase-like 13 (METTL3) and its correlation with clinicopathological features and used xenograft experiment to check METTL3 effect in vivo. m6A-Seq was used to profiled m6A transcriptome-wide in hepatoblastoma tumor tissue and normal tissue. Finally, methylated RNA immunoprecipitation (MeRIP) assay, RNA remaining assay to perform the regulator mechanism of MEETL3 on the target CTNNB1 in HB. Results In this research, we discovered that m6A modifications are increased in hepatoblastoma, and METTL3 is the main factor involved with aberrant m6A modification. We also profiled m6A across the whole transcriptome in hepatoblastoma tumor tissues and normal tissues. Our findings suggest that m6A is highly expressed in hepatoblastoma tumors. Also, m6A is enriched not only around the stop codon, but also around the coding sequence (CDS) region. Gene ontology analysis indicates that m6A mRNA methylation contributes significantly to regulate the Wnt/β-catenin pathway. Reduced m6A methylation can lead to a decrease in expression and stability of the CTNNB1. Conclusion Overall our findings suggest enhanced m6A mRNA methylation as an oncogenic mechanism in hepatoblastoma, METTL3 is significantly up-regulated in HB and promotes HB development. And identify CTNNB1 as a regulator of METTL3 guided m6A modification in HB.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Julia B. McBrien ◽  
Andrew K. H. Wong ◽  
Erick White ◽  
Diane G. Carnathan ◽  
John H. Lee ◽  
...  

ABSTRACT The “shock and kill” strategy predicates that virus reactivation in latently infected cells is required to eliminate the human immunodeficiency virus (HIV) reservoir. In a recent study, we showed robust and persistent induction of plasma viremia in antiretroviral therapy (ART)-treated simian immunodeficiency virus-infected rhesus macaques (RMs) undergoing CD8α depletion and treated with the interleukin-15 (IL-15) superagonist N-803 (J. B. McBrien et al., Nature 578:154–159, 2020, https://doi.org/10.1038/s41586-020-1946-0). Of note, in that study we used an antibody targeting CD8α, thereby depleting NK cells, NKT cells, and γδ T cells, in addition to CD8+ T cells. In the current proof-of-concept study, we tested whether virus reactivation can be induced by administration of N-803 to simian-human chimeric immunodeficiency virus-infected, ART-treated RMs that are selectively depleted of CD8+ T cells via the CD8β-targeting antibody CD8b255R1. CD8β depletion was performed in five SHIVSF162P3-infected RMs treated with ART for 12 months and with plasma viremia consistently below 3 copies/ml. All animals received four weekly doses of N-803 starting at the time of CD8b255R1 administration. The induction of detectable plasma viremia was observed in three out of five RMs, with the level of virus reactivation seemingly correlated with the frequency of CD8+ T cells following CD8β depletion as well as the level of virus reactivation observed when the same animals underwent CD8α depletion and N-803 administration after 24 weeks of ART. These data indicate that CD8β depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivation in vivo under ART. IMPORTANCE The “shock and kill” HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8β-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy.


Sign in / Sign up

Export Citation Format

Share Document