scholarly journals A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies

Science ◽  
2019 ◽  
Vol 365 (6453) ◽  
pp. 599-604 ◽  
Author(s):  
Steffen Boettcher ◽  
Peter G. Miller ◽  
Rohan Sharma ◽  
Marie McConkey ◽  
Matthew Leventhal ◽  
...  

TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single–amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies.

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2709-2718 ◽  
Author(s):  
P. Miskiewicz ◽  
D. Morrissey ◽  
Y. Lan ◽  
L. Raj ◽  
S. Kessler ◽  
...  

Drosophila paired, a homolog of mammalian Pax-3, is key to the coordinated regulation of segment-polarity genes during embryogenesis. The paired gene and its homologs are unusual in encoding proteins with two DNA-binding domains, a paired domain and a homeodomain. We are using an in vivo assay to dissect the functions of the domains of this type of molecule. In particular, we are interested in determining whether one or both DNA-binding activities are required for individual in vivo functions of Paired. We constructed point mutants in each domain designed to disrupt DNA binding and tested the mutants with ectopic expression assays in Drosophila embryos. Mutations in either domain abolished the normal regulation of the target genes engrailed, hedgehog, gooseberry and even-skipped, suggesting that these in vivo functions of Paired require DNA binding through both domains rather than either domain alone. However, when the two mutant proteins were placed in the same embryo, Paired function was restored, indicating that the two DNA-binding activities need not be present in the same molecule. Quantitation of this effect shows that the paired domain mutant has a dominant-negative effect consistent with the observations that Paired protein can bind DNA as a dimer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 25-25
Author(s):  
Norihiko Kawamata ◽  
Mario Pennella ◽  
Jennifer Woo ◽  
Arnold Berk ◽  
H. Phillip Koeffler

Abstract Abstract 25 We have previously cloned a number of fusion genes involving PAX5 in acute lymphoblastic leukemia (ALL) (Kawamata N. et al. PNAS, 2008). All of these fusion products exerted a dominant negative effect over the wild-type PAX5. One of these fusion PAX5 proteins, PAX5-C20orf112, was generated by the fusion between the DNA binding domain of PAX5 (PAX5DB) and the C-terminal end of C20orf112. To find the mechanism of the dominant negative effect of the PAX5-C20 fusion, we performed Fluorescence Recovery After Photobleaching (FRAP) assay using PAX5-C20 and PAX5wt constructs connected with Yellow Fluorescence Proteins (YFP). Results showed extremely strong DNA binding affinity of PAX5-C20 compared to PAX5wt. FRAP experiments using deletion mutants of PAX5-C20 showed that both the DNA binding domain and C-terminal alpha-helix region of C20 were indispensable for this strong binding to DNA. Fluorescence Resonance Energy Transfer (FRET) assay, Bi-molecule Fluorescence Complementation (BiFC) assay, and co-immunoprecipitation assay showed that C-terminal end of C20 containing an alpha-helix region encodes a homo-multimerization domain. To confirm that homo-multimerization of PAX5DB increases DNA binding affinity, PAX5DB was fused to the inducible dimerization motif of FKBP (PAX5DB-FK). PAX5DB-FK increased its DNA binding affinity with addition of FKBP ligand inducing homo-dimerization. We also fused PAX5DB to homo-dimerization of MAX (bHLH domain), or tetramerization domain of TP53. FRAP assays showed that homo-dimerization increased its DNA binding activity, and homo-tetramerization further increased its DNA binding and its dominant negative effect over PAX5wt. PAX5-ETV6, also a common fusion protein in ALL, exerts a dominant negative effect over PAX5wt. The ETV6 region of this fusion protein has a multimerization (SAM) domain and the PAX5DB-ETV6SAM mutant protein also showed a dominant negative effect and strong binding to DNA. Importantly, in further studies, co-expression of PAX5-C20 and the YFP-C20-alpha-helix-region diminished the strong DNA binding and the dominant negative activity of the fusion protein. Our data show that multimerization of the DNA binding domain of PAX5 induces strong DNA binding activity, leading to its dominant negative effect over the wild type transcription factor. We believe this represents a new paradigm explaining how a number of fusion genes containing a DB motif from one protein and a multimerization motif from the other partner, can behave in a dominant negative fashion. These observations suggest that peptides/ small molecules inhibiting the multimerization of these oncogenic fusion transcription factors can be promising reagents for treating cancers. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 288 ◽  
Author(s):  
Maximilian Vieler ◽  
Suparna Sanyal

In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Lijun Xu ◽  
Qianqian Pang ◽  
Yan Jiang ◽  
Ou Wang ◽  
Mei Li ◽  
...  

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone and/or dental mineralization, and decreased serum alkaline phosphatase (ALP) activity. ALPL, the only gene related with HPP, encodes tissue non-specific ALP (TNSALP). Few studies were carried out in ALPL gene mutations in the Chinese population with HPP. The purpose of the present study is to elucidate the clinical and genetic characteristics of HPP in five unrelated Chinese families and two sporadic patients. Ten clinically diagnosed HPP patients from five unrelated Chinese families and two sporadic patients and fifty healthy controls were genetically investigated. All 12 exons and exon–intron boundaries of the ALPL gene were amplified by PCR and directly sequenced. The laboratory and radiological investigations were conducted simultaneously in these HPP ten patients. A 3D model of the TNSALP was used to predict the dominant negative effect of identified missense mutations. Three odonto, three childhood, and four adult types of HPP were clinically diagnosed. Ten mutations were identified in five unrelated Chinese families and two sporadic patients, including eight missense mutations and two frameshift mutations. Of which, four were novel: one frameshift mutation (p.R138Pfsx45); three missense mutations (p.C201R, p.V459A, p.C497S). No identical mutations and any other new ALPL mutations were found in unrelated 50 healthy controls. Our study demonstrated that the ALPL gene mutations are responsible for HPP in these Chinese families. These findings will be useful for clinicians to improve understanding of this heritable bone disorder.


1996 ◽  
Vol 16 (3) ◽  
pp. 1203-1211 ◽  
Author(s):  
K Takebayashi ◽  
K Chida ◽  
I Tsukamoto ◽  
E Morii ◽  
H Munakata ◽  
...  

In the DNA binding domain of microphthalmia-associated transcription factor (MITF), four mutations are reported: mi, Mi wh, mi ew, and mi or. MITFs encoded by the mi, Mi wh, mi ew, and Mi or mutant alleles (mi-MITF, Mi wh-MITF, Mi ew-MITF, and Mi or-MITF, respectively) interfered with the DNA binding of wild-type MITF, TFE3, and another basic helix-loop-helix leucine zipper protein in vitro. Polyclonal antibody against MITF was produced and used for investigating the subcellular localization of mutant MITFs. Immunocytochemistry and immunoblotting revealed that more than 99% of wild-type MITF and Mi wh-MITF located in nuclei of transfected NIH 3T3 and 293T cells. In contrast, mi-MITF predominantly located in the cytoplasm of cells transfected with the corresponding plasmid. When the immunoglobulin G (IgG)-conjugated peptides representing a part of the DNA binding domain containing mi and Mi wh mutations were microinjected into the cytoplasm of NRK49F cells, wild-type peptide and Mi wh-type peptide-IgG conjugate localized in nuclei but mi-type peptide-IgG conjugate was detectable only in the cytoplasm. It was also demonstrated that the nuclear translocation potential of Mi or-MITF was normal but that Mi ew-MITF was impaired as well as mi-MITF. In cotransfection assay, a strong dominant negative effect of Mi wh-MITF against wild-type MITF-dependent transactivation system on tyrosinase promoter was observed, but mi-MITF had a small effect. However, by the conjugation of simian virus 40 large-T-antigen-derived nuclear localization signal to mi-MITF, the dominant negative effect was enhanced. Furthermore, we demonstrated that the interaction between wild-type MITF and mi-MITF occurred in the cytoplasm and that mi-MITF had an inhibitory effect on nuclear localization potential of wild-type MITF.


2020 ◽  
Vol 12 (560) ◽  
pp. eaax8013 ◽  
Author(s):  
Veli-Matti Leppänen ◽  
Pascal Brouillard ◽  
Emilia A. Korhonen ◽  
Tuomas Sipilä ◽  
Sawan Kumar Jha ◽  
...  

Primary lymphedema is caused by developmental and functional defects of the lymphatic vascular system that result in accumulation of protein-rich fluid in tissues, resulting in edema. The 28 currently known genes causing primary lymphedema can explain <30% of cases. Angiopoietin 1 (ANGPT1) and ANGPT2 function via the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor–like domains 1 and 2) receptor complex and α5β1 integrin to form an endothelial cell signaling pathway that is critical for blood and lymphatic vessel formation and remodeling during embryonic development, as well as for homeostasis of the mature vasculature. By screening a cohort of 543 individuals affected by primary lymphedema, we identified one heterozygous de novo ANGPT2 whole-gene deletion and four heterozygous ANGPT2 missense mutations. Functional analyses revealed three missense mutations that resulted in decreased ANGPT2 secretion and inhibited the secretion of wild-type (WT)–ANGPT2, suggesting that they have a dominant-negative effect on ANGPT2 signaling. WT-ANGPT2 and soluble mutants T299M and N304K activated TIE1 and TIE2 in an autocrine assay in human lymphatic endothelial cells. Molecular modeling and biophysical studies showed that amino-terminally truncated ANGPT subunits formed asymmetrical homodimers that bound TIE2 in a 2:1 ratio. The T299M mutant, located in the dimerization interphase, showed reduced integrin α5 binding, and its expression in mouse skin promoted hyperplasia and dilation of cutaneous lymphatic vessels. These results demonstrate that primary lymphedema can be associated with ANGPT2 mutations and provide insights into TIE1 and TIE2 activation mechanisms.


2021 ◽  
Author(s):  
Ashley S. Denney ◽  
Andrew D. Weems ◽  
Michael A. McMurray

ABSTRACTLife requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate three-dimensional structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here we build upon our septin studies to develop a new approach to identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Chaperone inhibition liberates the mutant to enter the nucleus where it has a slight dominant-negative effect. These findings provide new insights into the effects of missense mutations.


Sign in / Sign up

Export Citation Format

Share Document