The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse

2021 ◽  
Vol 14 (687) ◽  
pp. eaba0717
Author(s):  
Shunsuke Kataoka ◽  
Priyanka Manandhar ◽  
Judong Lee ◽  
Creg J. Workman ◽  
Hridesh Banerjee ◽  
...  

Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3–mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)–dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.

2019 ◽  
Author(s):  
Shunsuke Kataoka ◽  
Priyanka Manandhar ◽  
Creg J. Workman ◽  
Hridesh Banerjee ◽  
Andrea L. Szymczak-Workman ◽  
...  

AbstractExpression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic T cell activation, including in chronic infection and solid tumors. We and others previously reported that Tim-3 exerts apparently paradoxical co-stimulatory activity in T cells (and other cells), including enhancement of ribosomal S6 protein phosphorylation (pS6). Here we examined the upstream signaling pathways that control Tim3-mediated increases in pS6 in T cells. We have also defined the localization of Tim-3 relative to the T cell immune synapse and impacts on downstream signaling. Recruitment of Tim-3 to the immune synapse was regulated exclusively by the transmembrane domain, replacement of which impaired Tim-3 co-stimulation of pS6. Strikingly, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in the context of a chimeric antigen receptor still allowed for robust T cell activation. Our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.


2015 ◽  
Vol 113 (2) ◽  
pp. 386-391 ◽  
Author(s):  
Omar I. Vivar ◽  
Giulia Masi ◽  
Jean-Marie Carpier ◽  
Joao G. Magalhaes ◽  
Donatella Galgano ◽  
...  

Biogenesis of the immune synapse at the interface between antigen-presenting cells and T cells assembles and organizes a large number of membrane proteins required for effective signaling through the T-cell receptor. We showed previously that the intraflagellar transport protein 20 (IFT20), a component of the intraflagellar transport system, controls polarized traffic during immune synapse assembly. To investigate the role of IFT20 in primary CD4+ T cells in vitro and in vivo, we generated mice bearing a conditional defect of IFT20 expression in T cells. We show that in the absence of IFT20, although cell spreading and the polarization of the centrosome were unaffected, T-cell receptor (TCR)-mediated signaling and recruitment of the signaling adaptor LAT (linker for activation of T cells) at the immune synapse were reduced. As a consequence, CD4+ T-cell activation and proliferation were also defective. In vivo, conditional IFT20-deficient mice failed to mount effective antigen-specific T-cell responses, and their T cells failed to induce colitis after adoptive transfer to Rag−/− mice. IFT20 is therefore required for the delivery of the intracellular pool of LAT to the immune synapse in naive primary T lymphocytes and for effective T-cell responses in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunmin Jung ◽  
Lai Wen ◽  
Amnon Altman ◽  
Klaus Ley

AbstractThe tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.


Blood ◽  
2009 ◽  
Vol 113 (15) ◽  
pp. 3520-3529 ◽  
Author(s):  
Lian-Qun Qiu ◽  
Peter Cresswell ◽  
Keh-Chuang Chin

Abstract Viperin (virus inhibitory protein, endoplasmic reticulum [ER]–associated, interferon-inducible) has been identified as a highly inducible ER protein that has antiviral activity. Here, we characterized the phenotype of mice deficient in viperin and examined the biological function of viperin in peripheral T-cell activation and differentiation. Splenic CD4+ T cells deficient in viperin exhibited normal anti–T-cell receptor (TCR)–induced proliferation and IL-2 production, but produced significantly less T helper 2 (Th2) cytokines, including IL-4, IL-5, and IL-13, in association with impaired GATA3 activation, after stimulation with anti-CD3 antibody, which was not restored upon costimulation with anti-CD28. Th2 differentiation of viperin-deficient naive T cells was also impaired in the presence of strong TCR signaling and minimum IL-4, but not under optimal Th2-skewed conditions. In parallel, viperin-deficient T cells showed decreases in NF-κB1/p50 and AP-1/JunB DNA binding activities after TCR engagement. Thus, viperin facilitates TCR-mediated GATA-3 activation and optimal Th2 cytokine production by modulating NF-κB and AP-1 activities.


2006 ◽  
Vol 26 (14) ◽  
pp. 5497-5508 ◽  
Author(s):  
Kazuhiro Ishiguro ◽  
Todd Green ◽  
Joseph Rapley ◽  
Heather Wachtel ◽  
Cosmas Giallourakis ◽  
...  

ABSTRACT CARMA1 is a central regulator of NF-κB activation in lymphocytes. CARMA1 and Bcl10 functionally interact and control NF-κB signaling downstream of the T-cell receptor (TCR). Computational analysis of expression neighborhoods of CARMA1-Bcl10MALT 1 for enrichment in kinases identified calmodulin-dependent protein kinase II (CaMKII) as an important component of this pathway. Here we report that Ca2+/CaMKII is redistributed to the immune synapse following T-cell activation and that CaMKII is critical for NF-κB activation induced by TCR stimulation. Furthermore, CaMKII enhances CARMA1-induced NF-κB activation. Moreover, we have shown that CaMKII phosphorylates CARMA1 on Ser109 and that the phosphorylation facilitates the interaction between CARMA1 and Bcl10. These results provide a novel function for CaMKII in TCR signaling and CARMA1-induced NF-κB activation.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2021 ◽  
Vol 478 (6) ◽  
pp. 1303-1307
Author(s):  
Kriti Bahl ◽  
Jeroen P. Roose

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


Sign in / Sign up

Export Citation Format

Share Document