scholarly journals Josephson junction infrared single-photon detector

Science ◽  
2021 ◽  
Vol 372 (6540) ◽  
pp. 409-412
Author(s):  
Evan D. Walsh ◽  
Woochan Jung ◽  
Gil-Ho Lee ◽  
Dmitri K. Efetov ◽  
Bae-Ian Wu ◽  
...  

Josephson junctions are superconducting devices used as high-sensitivity magnetometers and voltage amplifiers as well as the basis of high-performance cryogenic computers and superconducting quantum computers. Although device performance can be degraded by the generation of quasiparticles formed from broken Cooper pairs, this phenomenon also opens opportunities to sensitively detect electromagnetic radiation. We demonstrate single near-infrared photon detection by coupling photons to the localized surface plasmons of a graphene-based Josephson junction. Using the photon-induced switching statistics of the current-biased device, we reveal the critical role of quasiparticles generated by the absorbed photon in the detection mechanism. The photon sensitivity will enable a high-speed, low-power optical interconnect for future superconducting computing architectures.

2015 ◽  
Vol 1807 ◽  
pp. 1-6 ◽  
Author(s):  
A.E. Lita ◽  
V.B. Verma ◽  
R. D. Horansky ◽  
J.M. Shainline ◽  
R.P. Mirin ◽  
...  

ABSTRACTSuperconducting nanowire single-photon detectors (SNSPDs) based on ultra-thin films have become the preferred technology for applications that require high efficiency single-photon detectors with high speed, high timing resolution, and low dark count rates at near-infrared wavelengths. Since demonstration of the first SNSPD using NbN thin films, an increasingly larger number of materials are being explored. We investigate amorphous thin film alloys of MoSi, MoGe, and WRe with the goal of optimizing SNSPDs for higher operating temperature, high efficiency and high speed. To explore material adequacy for SNSPDs, we have measured superconducting transition temperature (Tc) as a function of film thickness and sheet resistance, as well as critical current densities. In this paper we present our results comparing these materials to WSi, another amorphous material widely used for SNSPD devices.


2011 ◽  
Vol 19 (20) ◽  
pp. 19562 ◽  
Author(s):  
M. Fujiwara ◽  
A. Tanaka ◽  
S. Takahashi ◽  
K. Yoshino ◽  
Y. Nambu ◽  
...  

2020 ◽  
Author(s):  
Yoichiro Hanaoka ◽  
Yukio Katsukawa ◽  
Satoshi Morita ◽  
Yukiko Kamata ◽  
Noriyoshi Ishizuka

Abstract Polarimetry is a crucial method to investigate solar magnetic elds. From the viewpoint of space weather, the magnetic eld in solar laments, which occasionally erupt and develop into interplanetary ux ropes, is of particular interest. To measure the magnetic eld in laments, high-performance polarimetry in the near-infrared wavelengths employing a high-speed, large-format detector is required; however, so far, this has been difficult to be realized. Thus, the development of a new infrared camera for advanced solar polarimetry has been started, employing a HAWAII-2RG (H2RG) array by Teledyne, which has 2048 2048 pixels, focusing on the wavelengths in the range of 1.0{1.6 m. We solved the problem of the difficult operation of the H2RGs under \fast readout mode" synchronizing with high-speed polarization modulation by introducing a \MACIE" (Markury ASIC Control and Interface Electronics) interface card and new assembly codes provided by Markury Scientic. This enables polarization measurements with high frame-rates, such as 29{117 frames per seconds, using a H2RG. We conducted experimental observations of the Sun and conrmed the high polarimetric performance of the camera.


2018 ◽  
Vol 170 ◽  
pp. 09009 ◽  
Author(s):  
J. Radtke ◽  
J. Sponner ◽  
C. Jakobi ◽  
J. Schneider ◽  
M. Sommer ◽  
...  

Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.


Author(s):  
William Lo ◽  
Kenneth Wilsher ◽  
Richard Malinsky ◽  
Nina Boiadjieva ◽  
Chun-Cheng Tsao ◽  
...  

Abstract Time-resolved photon emission (TRPE) results, obtained using a new superconducting, single-photon detector (SSPD) are reported. Detection efficiency (DE) for large area detectors has recently been improved by >100x without affecting SSPDs inherently low jitter (≈30 ps) and low dark-count rate (<30 s-1). TRPE measurements taken from a 0.13 μm geometry CMOS IC are presented. A single laser, time-differential probing scheme that is being investigated for next-generation laser voltage probing (LVP) is also discussed. This new scheme is designed to have shot-noise-limited performance, allowing signals as small as 100 parts-per-million (ppm) to be reliably measured.


2021 ◽  
Author(s):  
Qi Chen ◽  
Rui Ge ◽  
Labao Zhang ◽  
Feiyan Li ◽  
Biao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document