Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+T cell dysfunction and maintain memory phenotype

2018 ◽  
Vol 3 (29) ◽  
pp. eaat7061 ◽  
Author(s):  
Bei Wang ◽  
Wen Zhang ◽  
Vladimir Jankovic ◽  
Jacquelynn Golubov ◽  
Patrick Poon ◽  
...  

Most patients with cancer do not develop durable antitumor responses after programmed cell death protein 1 (PD-1) or programmed cell death ligand 1(PD-L1) checkpoint inhibition monotherapy because of an ephemeral reversal of T cell dysfunction and failure to promote long-lasting immunological T cell memory. Activating costimulatory pathways to induce stronger T cell activation may improve the efficacy of checkpoint inhibition and lead to durable antitumor responses. We performed single-cell RNA sequencing of more than 2000 tumor-infiltrating CD8+T cells in mice receiving both PD-1 and GITR (glucocorticoid-induced tumor necrosis factor receptor–related protein) antibodies and found that this combination synergistically enhanced the effector function of expanded CD8+T cells by restoring the balance of key homeostatic regulators CD226 and T cell immunoreceptor with Ig and ITIM domains (TIGIT), leading to a robust survival benefit. Combination therapy decreased CD8+T cell dysfunction and induced a highly proliferative precursor effector memory T cell phenotype in a CD226-dependent manner. PD-1 inhibition rescued CD226 activity by preventing PD-1–Src homology region 2 (SHP2) dephosphophorylation of the CD226 intracellular domain, whereas GITR agonism decreased TIGIT expression. Unmasking the molecular pathways driving durable antitumor responses will be essential to the development of rational approaches to optimizing cancer immunotherapy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Zhihao Zhao ◽  
Nasha Qiu ◽  
Quan Zhou ◽  
Guowei Wang ◽  
...  

AbstractAnti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) antibodies are currently used in the clinic to interupt the PD-1/PD-L1 immune checkpoint, which reverses T cell dysfunction/exhaustion and shows success in treating cancer. Here, we report a histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), which inhibits tumour histone demethylase Jumonji domain-containing 1A (JMJD1A) and thus downregulates its downstream β-catenin and subsequent PD-L1, providing an antibody-independent paradigm interrupting the PD-1/PD-L1 checkpoint. Synergistically, IOX1 inhibits cancer cells’ P-glycoproteins (P-gp) through the JMJD1A/β-catenin/P-gp pathway and greatly enhances doxorubicin (DOX)-induced immune-stimulatory immunogenic cell death. As a result, the IOX1 and DOX combination greatly promotes T cell infiltration and activity and significantly reduces tumour immunosuppressive factors. Their liposomal combination reduces the growth of various murine tumours, including subcutaneous, orthotopic, and lung metastasis tumours, and offers a long-term immunological memory function against tumour rechallenging. This work provides a small molecule-based potent cancer chemo-immunotherapy.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kamira Maharaj ◽  
John J. Powers ◽  
Melanie Mediavilla-Varela ◽  
Alex Achille ◽  
Wael Gamal ◽  
...  

Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3043-3043
Author(s):  
Anne W. J. Martens ◽  
Susanne R. Janssen ◽  
Ingrid A.M. Derks ◽  
Sanne Tonino ◽  
Eric Eldering ◽  
...  

Intro - Agents targeting the apoptosis pathway, like the Bcl-2 inhibitor venetoclax, are highly effective in chronic lymphocytic leukemia (CLL). However, not all patients experience deep responses and acquired resistance has already been described. T cell mediated lysis is another tool currently exploited in hematologic malignancies. In contrast to acute lymphoblastic leukemia (ALL) however, efficacy of autologous based T cell therapy, such as CAR T cells, in CLL has been low. This is linked to a CLL mediated acquired T cell dysfunction. Bispecific T cell engagers targeting CD19 are successfully applied in ALL, but whether it overcomes the acquired T cell dysfunction in CLL is unknown. We therefore tested efficacy of a CD3xCD19 Dual Affinity Re-Targeting molecule (DART) in CLL. Since it has been observed that bispecific antibodies can overcome deficient synapse formation in CLL (Robinson et al, 2018) and based on our assumption that T cell mediated lysis differs from venetoclax-mediated killing, we hypothesized that usage of a CD3xCD19 DART in CLL overcomes T cell dysfunction and will be effective against venetoclax resistant CLL. Methods - Co-culture of CLL derived or aged-matched healthy donor (HD) CD4+ and/or CD8+ T cells with (CD40 activated) primary CLL or CD19+ cell lines JeKo-1 or Ramos in presence of CD3xCD19 (JNJ-64052781), CD3xFITC, anti-CD3/28 antibodies was performed. R esults - JeKo-1 cells were highly sensitive to CD3xCD19 mediated HD T cell killing with close to 70% of lysis in a concentration of 10ng/mL using an E:T ratio of 4:1. In the same conditions, primary CLL cells proved sensitive for CD3xCD19 mediated HD T cell killing with 50% of lysis. Killing was observed irrespective of IGHV mutation or chemorefractory status. We next compared HD with CLL-derived T cells by measuring activation levels between direct TCR (anti-CD3/CD28) and CD3xCD19 stimulation. As described, TCR stimulation resulted in impaired CLL CD4+ and CD8+ T cell activation and proliferation when compared to HD. In contrast, treatment of CLL derived PBMCs with CD3xCD19 did not resulted in dysfunctional CLL-derived T cell responses (Fig 1A-C). Consistently, co-culture of CLL derived CD4+, CD8+ or a combination with either JeKo-1 or allogeneic CLL cells in the presence of CD3xCD19 resulted in significant cytotoxicity (Fig. 1D). In the allogeneic setting, cytotoxic capacity of CD4+ T cells was similar to their CD8+ counterparts. When targeting autologous CLL, a benefit was observed when both CD4+ and CD8+ T cells were present (Fig. 1D). We then studied whether venetoclax resistant CLL cells could be targeted by CD3xCD19 mediated T cell killing. Bcl-2 overexpressing Ramos were equally lysed in presence of the CD3xCD19 DART as their wildtype counterpart, indicating that Bcl-2 expression does not inhibit CD3xCD19 mediated cell death. Following CLL cell stimulation by CD40 ligation, anti-apoptotic Bcl-XL, Bfl-1 and Mcl-1 are highly induced (Thijssen et al., 2015) resulting in venetoclax resistance (Fig 1E). Nevertheless, CD40L stimulated CLL cells were as efficiently lysed upon CD3xCD19 treatment as unstimulated CLL. (Fig 1F). This indicates that an augmented apoptotic threshold does not impact efficacy of CD3xCD19. Further examination of the mechanism of CD3xCD19 mediated killing showed that lysis depended on granzymes, as blocking granule exocytosis prevented cell death. Independence of the mitochondrial apoptotic pathway was shown by equal sensitivity to CD3xCD19 mediated T cell lysis comparing BAX/BAK knockout Jeko-1 cells to the parental cell line. Also, caspase blockage did not inhibit cell death, pointing to apoptosis independent killing. In concordance, PARP cleavage could only be detected when caspase activity was not blocked. Conclusion - This is the first report describing reversal of CLL mediated T cell dysfunction by applying a CD3xCD19 DART. Furthermore, it shows that venetoclax resistant CLL can still be efficiently targeted by T cells, in a non-apoptotic fashion. These results imply that T cell mediated therapy could be used alongside venetoclax. Figure 1 Disclosures Eldering: Celgene: Research Funding; Roche: Research Funding; Janssen Pharmaceutical Companies: Research Funding. van der Windt:Genmab: Employment. Kater:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1778-1778
Author(s):  
Davide Brusa ◽  
Sara Serra ◽  
Marta Coscia ◽  
Davide Rossi ◽  
Gianluca Gaidano ◽  
...  

Abstract Abstract 1778 Chronic lymphocytic leukemia (CLL) is characterized by a progressive accumulation of mature B lymphocytes and it is marked by profound defects in T cell function. The mechanisms responsible for T cell dysfunction remain unclear, even if several observations show that T cells from CLL patients express markers of chronic activation. One of this marker is Programmed death-1 (PD-1), a cell surface molecule that inhibits activation of immune cells and it is involved in tumor escape mechanisms through binding of the specific PD-L1 ligand. The aim of this work is to evaluate the expression and function of the PD-1/PD-L1 axis in the CLL context. Using multiparameter flow cytometry, we showed that CD4+ and CD8+ T lymphocytes from CLL patients (n=117) express significantly higher levels of the PD-1 receptor, as compared to the same cell subpopulations purified from age- and sex-matched normal donors (n=33; 52% vs 34%, p <0.001). In keeping with the notion that PD-1 is a marker of cell exhaustion, CD4+ and CD8+ T lymphocytes from CLL patients displayed increased numbers of effector memory and terminally differentiated cells, respectively, with a concomitant decrease in naïve and central memory cells, when compared to controls. The number of effector memory and terminally differentiated cells positively associated with a more advanced stage of disease, treatment requirements and unfavorable genomic aberrations. Moreover, leukemic lymphocytes expressed higher levels of PD-L1 than circulating B lymphocytes from normal donors. PD-1 and PD-L1 expression significantly increased when T or B lymphocytes were treated with mitogenic signals, suggesting that this interaction might work efficiently in an activated environment. This hypothesis was tested by immunohistochemical analyses determining PD-1 and PD-L1 expression in the proliferation centers of lymph nodes sections from CLL patients. The results obtained indicate that PD-L1+ proliferating CLL cells are in close contact with CD4+/PD-1+ T lymphocytes. Lastly, functional experiments performed using anti-PD-1 antibodies or recombinant soluble PD-L1 clearly indicate that the PD-1/PD-L1 axis contributes to driving IL-4 secretion and to the inhibition of IFN-g production by CD8+ T cells. In conclusion, these results show that CD4+ and CD8+ T lymphocytes from CLL patients express high levels of the surface marker PD-1 and exhibit an exhausted phenotype, while B leukemic cells express the PD-L1 ligand. Functional data suggest that PD-1/PD-L1 interactions are critical in skewing the T cell compartment towards a Th2 phenotype, by impairing IFN-g secretion by CD8+ cells. Taken together, these observations suggest that pharmacological manipulation of the PD-1/PD-L1 axis might be relevant in restoring T cell functions in the CLL microenvironment. Disclosures: Inghirami: OncoEthix SA: Research Funding.


2019 ◽  
Vol 8 (10) ◽  
pp. 1596 ◽  
Author(s):  
De Re ◽  
Caggiari ◽  
Repetto ◽  
Mussolin ◽  
Mascarin

: The ligation of programmed cell death 1 (PD-1) with programmed cell death ligand PD-L activates the immune checkpoint leading to T-cell dysfunction, exhaustion, and tolerance, especially in Hodgkin lymphoma (HL) where the PD-L/ Janus kinase (Jak) signaling was frequently found altered. Anti-PD-1 or anti-PD-L1 monoclonal antibodies can reverse this immune checkpoint, releasing the brake on T-cell responses. The characterization of the mechanisms regulating both the expression of PD-1 and PD-L and their function(s) in HL is ongoing. We provide in this review the recent findings focused on this aim with special attention on the major research topics, such as adverse events and resistance to PD-1–PD-L1 inhibitor treatment, together with a part about angiogenesis, extracellular vesicles, and microbiome in HL pathogenesis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2964-2964
Author(s):  
Jessica C Shand ◽  
Christian M. Capitini ◽  
Haiying Qin ◽  
Nicole Nasholm ◽  
Brynn B Duncan ◽  
...  

Abstract Abstract 2964 INTRODUCTION: The curative potential of allogeneic transplant for high-risk malignancy is based on the observation that alloreactivity can result in a clinically significant graft-versus-tumor (GVT) effect. However, we have observed that alloreactivity directed against non-tumor restricted miHA's reduces quantitative responses to vaccines targeting tumor-specific antigens. The relative impact of the GVHD-mediating antigen on the potency of the GVT response when the antigen is shared has not been well studied. METHODS: A murine allotransplant system in which the clinically relevant GVHD antigen HY drives both graft-versus-host disease and the antitumor response was utilized. Following lethal irradiation, combinations of B6 male (HY-expressing) and female (HY-naïve) donors and recipients were used in T-cell depleted bone marrow transplants to control for HY expression in hematopoetic and non-hematopoetic compartments. Delayed donor lymphocyte infusion (DLI) with female HY-specific transgenic T-cells was then performed which allowed tracking of antigen-specific cells. Mice were subsequently challenged with an immunogenic HY-expressing tumor (MB49). In tumor protection studies, transplant recipients received a male dendritic cell vaccine at the time of DLI. Recipients were monitored for clinical GVHD scoring, weight loss, tumor-free and overall survival. Surface phenotyping of HY-specific CD8 T cells from recipient bone marrow, tumor-draining lymph node (LN) and spleen was performed serially by flow cytometry using congenic markers. Statistical analyses were performed using paired Student t-tests and Kaplan-Meier survival estimates. RESULTS: Transplantation of female marrow and HY-specific T cells into male recipients produces a mild HY-targeted GVHD, indicated by weight loss and skin GVHD scores. Female recipients of female marrow and HY-specific DLI had 100% survival following HY-expressing tumor challenge. In contrast, male recipients had only 20 +/− 4.7% tumor-free survival (p<0.0001), despite receiving HY-reactive female marrow and HY-specific DLI. Administration of an HY-expressing male dendritic cell vaccine did not improve either tumor growth velocity or tumor-free survival in male recipients. Despite a poor antitumor response in males, expression of HY on nonhematopoetic tissues produced a significant expansion of HY specific T-cells following DLI, regardless of tumor-bearing status (30.5 −77.4% total CD8 from spleen, draining LN and marrow, vs 0.01–1% from female recipient controls, p<0.0001). This suggested that impaired tumor control was due to dysfunction, rather than deletion, of HY-specific T cells. Indeed, nearly 100% of HY-specific CD8 isolated from the spleen, tumor-draining lymph node, and bone marrow of male recipients expressed high levels of PD-1, a phenomenon observed at all time points in tumor-bearing and non tumor-bearing male recipients with HY-directed GVHD. Non-HY specific CD8 cells did not express PD-1 (p<0.0001). Further, HY-specific CD8 from spleen and tumor-draining LN of male recipients display a significantly increased percentage of CD44+CD62L- effector memory (72.4 +/− 17.2%) vs. CD44+CD62L+ central memory (15.9 +/− 9.7%, p= 0.006) cells compared to non-HY specific CD8 cells (26.5% +/− 2.8 % vs. 28.2 +/− 12.7%, p= 0.52) from male and female recipient controls. CONCLUSIONS: In an experimental system where HY is expressed on both recipient nonhematopoetic tissue and tumor, HY-directed alloreactivity impairs the antitumor response despite antigen-specific DLI and effective vaccination. Characterization of alloreactive CD8 T cells in this setting reveals a persistence of effector memory and high levels of PD-1 expression, which suggest T-cell dysfunction as a possible mechanism. Further studies of T-cell dysfunction in this model may identify targets for therapeutic blockade following adoptive immunotherapy with particular relevance to those clinical situations where GVHD does not enhance GVT. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 7 (18) ◽  
pp. eabd2710
Author(s):  
Chen Zhu ◽  
Karen O. Dixon ◽  
Kathleen Newcomer ◽  
Guangxiang Gu ◽  
Sheng Xiao ◽  
...  

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell–mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3−/− T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.


2021 ◽  
Author(s):  
qi shao ◽  
Lei Wang ◽  
maoling yuan ◽  
Xiaohong Jin ◽  
changping wu

Abstract Background: T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immunosuppressive receptor expressed on the surface of immune cells, suppressing immune responses by activating the intracellular negative regulatory signals. TIGIT plays an important role in the pathogenesis of various tumors, but its immune escape in colorectal cancer remains unclear.Methods: In this study, TIGIT expression in the peripheral blood and tissue microarrays was detected flow cytometry and immunofluorescence and its relationship with prognosis was evaluated. The proliferation and cytokines of TIGIT+ T cells were measured. Glucose metabolism and key enzymes were detected by qPCR or western blot. After establishing the co-cultured system and xenotransplant models, TIGIT antibody alone or combined with PD-1 antibody was blocked to observe the tumor growth.Results: We found that the proportion of CD3+TIGIT+ T cells was increased in peripheral blood and cancer tissue in colorectal cancer patients when compared with the healthy donors. These cells exhibited functional defects, low proliferative activity, impaired cytokine production and reduced glucose metabolism. A strong association was also observed between the elevated TIGIT expression and poor prognosis. In the in vitro co-culture assays of T cells and tumor cells, the suppressed glucose metabolic activity of T cells was reversed by TIGIT blockade. In addition, this blockade induced the apoptosis and reduced G2/M transit in tumor cells. The antitumor efficacy of TIGIT Ab therapy was further demonstrated in a human colorectal xenograft mice model while co-blockers of TIGIT and PD-1 exhibited synergistic suppressing effects on tumor growth.Conclusions: It is suggest that while TIGIT induces CD3+ T cell dysfunction in colorectal cancer, co-targeting TIGIT and PD-1 can lead to an effective antitumor response and may serve as a novel therapeutic strategy for colorectal patients.


Sign in / Sign up

Export Citation Format

Share Document