Abstract 409: Matrix Metalloproteinase-13 Inhibition is Protective in a Pressure Overload Model of Heart Failure

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Allison E Schafer ◽  
Iñigo Valiente-Alandi ◽  
Burns C Blaxall

Heart failure (HF), the leading cause of morbidity and mortality in the United States, is characterized by pathologic remodeling, fibrosis and deteriorating cardiac function. Cardiac fibrosis occurs due to imbalanced production and degradation of extracellular matrix (ECM) proteins. Cardiac fibroblasts (CF) are largely responsible for the secretion of ECM proteins in the heart, and upon injury, transition to a migratory and proliferative myofibroblast (MF) phenotype, leading to excess ECM deposition. Elevated expression of matrix metalloproteinases (MMPs), proteolytic enzymes responsible for degradation of the ECM, is common in HF. Specifically, MMP13 is known to be upregulated in human HF patients. Therefore, we hypothesized that MMP13 plays an important role in pathologic cardiac remodeling, and that inhibition of MMP13 would prevent the development of HF in a pressure overload model, transverse aortic constriction (TAC). Mice were subjected to TAC and treated with the MMP13 inhibitor, WAY170523 (WAY), or vehicle 4 weeks post-TAC until 12 weeks post-TAC. Mice treated with WAY display decreased cardiac hypertrophy and preserved cardiac function compared to vehicle treated mice. WAY treatment may also attenuate interstitial and perivascular fibrosis as well as expression of pro-fibrotic genes. To determine the effect of MMP13 inhibition in cardiac cells, CF and MF were isolated from healthy mice or mice 5 days post-ischemia/reperfusion injury, respectively, and treated with WAY. MMP13 inhibition led to decreased CF invasion but did not affect migration, proliferation or adhesion. Interestingly, inhibition of MMP13 in MF attenuated migration, proliferation and invasion. Moreover, WAY treatment reduced collagen and fibronectin deposition in the ECM of MF. MMP13 inhibition also appeared to decrease Angiotensin II-induced hypertrophy in ventricular cardiomyocytes (CM). These data suggest a role for MMP13 in pressure overload-induced HF, CM hypertrophy and CF behavior. MMP13 inhibition after injury may attenuate cardiac hypertrophy as well as the CF to MF transition, leading to decreased cardiac fibrosis and improved cardiac function. Further understanding of the role of MMP13 could lead to a novel therapeutic target in the treatment of HF.

2018 ◽  
Vol 115 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Andrea Grund ◽  
Malgorzata Szaroszyk ◽  
Janina K Döppner ◽  
Mona Malek Mohammadi ◽  
Badder Kattih ◽  
...  

Abstract Aims Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Harpreet Singh ◽  
Kajol Shah ◽  
Devsena Ponnalagu ◽  
Sanjay Chandrasekhar ◽  
Andrew R Kohut ◽  
...  

Expression and activation of the large conductance calcium and voltage-gated potassium (BK Ca ) channels encoded by Kcnma1 gene is shown to be vital in cardioprotection from ischemia-reperfusion injury. BK Ca channels present in SA node cells regulate the heart rate, and in blood vessels play an active role in vascular relaxation. However, the role of BK Ca in regulation of structure and function of the heart is not fully-established. Using Kcnma1 -/- mice, we have observed structural changes in cardiomyocytes and compromised cardiac function as compared to wild type mice. Absence of BK Ca resulted in significant increase in size of adult cardiomyocytes (from 7.95 + 0.1 um 2 to 9.68 + 0.1 um 2 , p < 0.01, n=480 cells each) and also increased cardiac fibrosis. Further to determine underlying signaling mechanisms in cardiac hypertrophy, we performed microarray analysis of RNAs isolated from wild type and Kcnma1 -/- mice (n=3) hearts. We found up regulation of a class of cardiac hypertrophy markers (myosin variants) and changes in the expression of several mitochondrial genes (such as ND4) directly associated with heart diseases in Kcnma1 -/- mice. To evaluate the functional consequence of absence of BK Ca , we performed high-resolution echocardiography on wild type and Kcnma1 -/- mice. Under anesthesia (1.5% isoflurane), left ventricle of Kcnma1 -/- mice showed significant reduction (p < 0.05) in ejection fraction (56 + 2 %, n=7) as compared to wild type (74 + 3 %, n=6) as well as fractional shortening (23 + 3 %, n=7, and 39 + 3 %, n=6, respectively). Similarly, right ventricle had a lower ejection fraction (35.7 + 4% vs 56.9 + 5 %, n > 5) in Kcnma1 -/- as compared to wild type mice. In agreement with our histopathology and microarray data, Kcnma1 -/- mice showed increased posterior wall thickness (0.75 + 0.3 mm vs 0.62 + 0.1 mm) and interventricular septum thickness (0.83 + 0.4 mm, n=7 vs 0.68 + 0.3 mm, n=6) . Together, these data imply that BK Ca plays a direct role in cardiac hypertrophy and cardiac function.


2017 ◽  
Vol 113 (6) ◽  
pp. 633-643 ◽  
Author(s):  
Jihe Li ◽  
Keyvan Yousefi ◽  
Wen Ding ◽  
Jayanti Singh ◽  
Lina A. Shehadeh

Aims Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. Methods and results In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. Conclusion Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Ning Zhou ◽  
Ben Ma ◽  
Tristen T Hays ◽  
Hongyu Qiu

Aims: Pressure overload induced cardiac hypertrophy is a key risk factor for heart failure. Although several defined interventions result in a significant inhibition of cardiac hypertrophy, the functional consequences are controversial. Identification of novel targets modulating the cardiac hypertrophy without adversely affecting cardiac function is particularly crucial to the treatment of heart failure. Here we test our hypothesis that the valosin-containing protein (VCP) is a novel mediator of cardiac protection against cardiac hypertrophy and heart failure by pressure overload. Methods and Results: Pressure overload was induced by transverse aortic constriction (TAC) in a mouse model to mimic the progression of cardiac hypertrophy and heart failure. Cardiac structure and function were measured by echocardiography and hemodynamic analysis. VCP expression was significantly reduced in wild type (WT) mice after 2 weeks TAC at both the mRNA and protein levels by 40% and 45 % respectively and even more markedly reduced after 5 weeks TAC (68% in mRNA and 73% in protein, all, P <0.01 vs sham). Cardiac overexpression of VCP in a transgenic (TG) mouse did not alter either cardiac structure or function at baseline condition. However, compared to 2 week TAC WT mice, VCP TG mice showed a significant repression of cardiac hypotrophy, evidenced by a significant reduction in the ratio of left ventricle (LV) /tibial length (TL) by 36%, LV posterior wall thickness by 20%, and cardiomyocyte cross sectional area by 39% (all P <0.05 vs WT). After 5 weeks of TAC, while WT mice progressed to cardiac failure, VCP TG mice exhibited preservation of cardiac function in terms of ejection function (EF,72±1% vs 52±4.1% in WT) and Lung weight /TL ratio (8.0±0.8mg/mm vs 9.8±0.8 mg/mm in WT) ( P <0.05 vs WT). Induction of fetal cardiac genes in TAC WT, e.g. ANP and BNP, was significant suppressed in VCP TG mice ( P <0.05 vs WT). TAC induced activation of mammalian target of rapamycin complex 1 (mTORC1), e.g., an increase of phosphorylation of mTOR and S6K1, was significantly blunted in VCP TG mice vs WT after TAC ( P <0.05 vs WT). Conclusion: Overexpression of VCP in vivo prevents the progression of cardiac hypertrophy and dysfunction upon pressure overload by modulating mTORC1 signaling pathways.


2021 ◽  
Vol 14 (676) ◽  
pp. eabb5968
Author(s):  
Ryan C. Coleman ◽  
Akito Eguchi ◽  
Melissa Lieu ◽  
Rajika Roy ◽  
Eric W. Barr ◽  
...  

Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein–coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor–mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haiyan Deng ◽  
Lei-Lei Ma ◽  
Fei-Juan Kong ◽  
Zengyong Qiao

The transverse aortic constriction (TAC) model surgery is a widely used disease model to study pressure overload–induced cardiac hypertrophy and heart failure in mice. The severity of adverse cardiac remodeling of the TAC model is largely dependent on the degree of constriction around the aorta, and the phenotypes of TAC are also different in different mouse strains. Few studies focus on directly comparing phenotypes of the TAC model with different degrees of constriction around the aorta, and no study compares the difference in C57BL/6N mice. In the present study, C57BL/6N mice aged 10 weeks were subjected to sham, 25G TAC, 26G TAC, and 27G TAC surgery for 4 weeks. We then analyzed the different phenotypes induced by 25G TAC, 26G TAC, and 27G TAC in c57BL/6N mice in terms of pressure gradient, cardiac hypertrophy, cardiac function, heart failure situation, survival condition, and cardiac fibrosis. All C57BL/6N mice subjected to TAC surgery developed significantly hypertrophy. Mice subjected to 27G TAC had severe cardiac dysfunction, severe cardiac fibrosis, and exhibited characteristics of heart failure at 4 weeks post-TAC. Compared with 27G TAC mice, 26G TAC mice showed a much milder response in cardiac dysfunction and cardiac fibrosis compared to 27G TAC, and a very small fraction of the 26G TAC group exhibited characteristics of heart failure. There was no obvious cardiac dysfunction, cardiac fibrosis, and characteristics of heart failure observed in 25G TAC mice. Based on our results, we conclude that the 25G TAC, 26G TAC, and 27G TAC induced distinct phenotypes in C57BL/6N mice.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Gerald Coulis ◽  
Alexandre Bergeron ◽  
Yanfen Shi ◽  
David Labbe ◽  
Michel Tremblay ◽  
...  

Cardiac hypertrophy involves the re-expression of a foetal gene program that occurs when cardiomyocytes are continuously exposed to stresses. The enlargement initially improves cardiac function, however, this compensatory hypertrophy predisposes individuals to arrhythmias, pathological hypertrophy and heart failure. Given the importance of reactive oxygen species (ROS) in the transition from cardiac hypertrophy to heart failure and the documented inhibition of PTPs by ROS, we hypothesized and explored whether specific PTPs could act as checkpoints in this process. We have identified PTP1B as a target of ROS in hearts undergoing hypertrophy. To better understand the role of PTP1B inhibition in cardiac hypertrophy, we generated cardiomyocyte-specific PTP1B knockout (PTP1B cKO) mice. Subjecting PTP1B cKO mice to pressure overload (PO) caused a dramatic left ventricular dilation and several distinctive features of heart failure when compared to control mice subjected to PO for the same period. Characterization of the mRNAs expressed in the hypertrophy-associated foetal gene program revealed that although PO led to increased mRNA levels of ANF and BNP, the increased expression of β-MHC observed in control mice subjected to PO was compromised in PTP1B cKO-PO mice. Since PTP1B inactivation can lead to the inactivation of AGO2 and compromise miRNA-mediated mRNAs repression, we investigated whether PTP1B regulated AGO2 phosphorylation and association with mRNAs in this context. We observed that AGO2 phosphotyrosine-393 levels were elevated and that AGO2 was a substrate of PTP1B in myocytes and in hearts undergoing hypertrophy. We also found changes in AGO2-mRNA associations between control- and PTP1B cKO-PO hearts and identified MED13 as a regulator of β-MHC expression that was differentially regulated by AGO2 in PTP1B cKO-PO hearts. Since increased expression of β-MHC contributes to the compensatory response that initially improves cardiac function, we will propose a model in which PTP1B inhibition regulates AGO2 activity and contributes to heart failure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Helena Kerp ◽  
Georg Sebastian Hönes ◽  
Elen Tolstik ◽  
Judith Hönes-Wendland ◽  
Janina Gassen ◽  
...  

Purpose: Thyroid hormones (TH) play a central role for cardiac function. TH influence heart rate and cardiac contractility, and altered thyroid function is associated with increased cardiovascular morbidity and mortality. The precise role of TH in onset and progression of heart failure still requires clarification.Methods: Chronic left ventricular pressure overload was induced in mouse hearts by transverse aortic constriction (TAC). One week after TAC, alteration of TH status was induced and the impact on cardiac disease progression was studied longitudinally over 4 weeks in mice with hypo- or hyperthyroidism and was compared to euthyroid TAC controls. Serial assessment was performed for heart function (2D M-mode echocardiography), heart morphology (weight, fibrosis, and cardiomyocyte cross-sectional area), and molecular changes in heart tissues (TH target gene expression, apoptosis, and mTOR activation) at 2 and 4 weeks.Results: In diseased heart, subsequent TH restriction stopped progression of maladaptive cardiac hypertrophy and improved cardiac function. In contrast and compared to euthyroid TAC controls, increased TH availability after TAC propelled maladaptive cardiac growth and development of heart failure. This was accompanied by a rise in cardiomyocyte apoptosis and mTOR pathway activation.Conclusion: This study shows, for the first time, a protective effect of TH deprivation against progression of pathological cardiac hypertrophy and development of congestive heart failure in mice with left ventricular pressure overload. Whether this also applies to the human situation needs to be determined in clinical studies and would infer a critical re-thinking of management of TH status in patients with hypertensive heart disease.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Yanhui Li ◽  
Yan Wang ◽  
Man Zou ◽  
Cong Chen ◽  
Yili Chen ◽  
...  

AMP-activated protein kinase (AMPK), a serine/threonine protein kinase, has been shown to exert a protective effect against cardiac hypertrophy and heart failure. Our previous reports have demonstrated that AMPK can inhibit cardiac hypertrophy and block the development of heart failure by promoting autophagy. However, other investigators have demonstrated that overactive and dysregulated autophagy may also contribute to the onset and exacerbation of heart failure. Thus, a major goal of the present investigation is to explore how AMPK regulates autophagy in heart failure. First, heart failure was induced in mice by 4 weeks of pressure overload; AMPK activation was subsequently induced by injecting 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleotide (AICAR) after the establishment of chronic heart failure. We showed that AMPK activation significantly attenuated the progression of heart failure and improved cardiac function, which was accompanied by decreased autophagy levels in the failing hearts. Additionally, we demonstrated that the treatment with AICAR inhibited phosphorylation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) downstream effectors 4E-binding protein1 (4EBP1), and ribosomal protein S6 kinase (p70S6K). A major action of AICAR was significantly to activate AKT (Ser473), the downstream substrate of mTOR complex 2 (mTORC2). In conclusion, the data suggest that AMPK improved cardiac function during the development of chronic heart failure by attenuating autophagy, potentially via mTORC2 activation and the downstream effects.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Usui ◽  
S Takashima ◽  
O Inoue ◽  
C Goten ◽  
Y Takeda ◽  
...  

Abstract Background Hepatokine selenoprotein P (SeP) contributes to insulin resistance and hyperglycemia in patients with type 2 diabetes. Inhibition of SeP protects the heart from ischemia reperfusion injury and serum levels of SeP are elevated in patients with heart failure with reduced ejection fraction. Objective We investigated the role of SeP in the regulation of cardiac remodeling in response to pressure overload. Methods and results To examine the role of SeP in cardiac remodeling, transverse aortic constriction (TAC) was subjected to SeP knockout (KO) and wild-type (WT) mice for 2 weeks. Hepatic expression of SeP in WT was significantly increased by TAC. LV weight/tibial length (TL) was significantly smaller in SeP KO mice than in WT mice (6.75±0.24 vs 8.33±0.32, p<0.01). Lung weight/TL was significantly smaller in SeP KO than in WT mice (10.46±0.44 vs 16.38±1.12, p<0.05). TAC-induced cardiac upregulation of the fetal type genes, including atrial and brain natriuretic factors, was significantly attenuated in SeP KO compared to WT. Furthermore, azan staining revealed that there was significantly less interstitial fibrosis in hearts after TAC in SeP KO than in WT mice. To determine whether hepatic overexpression of SeP affects TAC-induced cardiac hypertrophy, a hydrodynamic injection method was used to generate mice that overexpress SeP mRNA in the liver. Hepatic overexpression of SeP in SeP KO mice lead to a significant increase in LV weight/TL and Lung weight/TL after TAC compared to that in other SeP KO mice. Conclusions These results suggest that cardiac pressure overload induced hepatic expression of SeP and the absence of endogenous SeP attenuated cardiac hypertrophy, dysfunction and fibrosis in response to pressure overload in mice. SeP possibly plays a maladaptive role against progression of heart failure through the liver-heart axis.


Sign in / Sign up

Export Citation Format

Share Document