scholarly journals A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates

2015 ◽  
Vol 7 (290) ◽  
pp. 290ra90-290ra90 ◽  
Author(s):  
Fabiano Oliveira ◽  
Edgar Rowton ◽  
Hamide Aslan ◽  
Regis Gomes ◽  
Philip A. Castrovinci ◽  
...  

Currently, there are no commercially available human vaccines against leishmaniasis. In rodents, cellular immunity to salivary proteins of sand fly vectors is associated to protection against leishmaniasis, making them worthy targets for further exploration as vaccines. We demonstrate that nonhuman primates (NHP) exposed to Phlebotomus duboscqi uninfected sand fly bites or immunized with salivary protein PdSP15 are protected against cutaneous leishmaniasis initiated by infected bites. Uninfected sand fly–exposed and 7 of 10 PdSP15-immunized rhesus macaques displayed a significant reduction in disease and parasite burden compared to controls. Protection correlated to the early appearance of Leishmania-specific CD4+IFN-γ+ lymphocytes, suggesting that immunity to saliva or PdSP15 augments the host immune response to the parasites while maintaining minimal pathology. Notably, the 30% unprotected PdSP15-immunized NHP developed neither immunity to PdSP15 nor an accelerated Leishmania-specific immunity. Sera and peripheral blood mononuclear cells from individuals naturally exposed to P. duboscqi bites recognized PdSP15, demonstrating its immunogenicity in humans. PdSP15 sequence and structure show no homology to mammalian proteins, further demonstrating its potential as a component of a vaccine for human leishmaniasis.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nan Xiao ◽  
Meng Nie ◽  
Huanhuan Pang ◽  
Bohong Wang ◽  
Jieli Hu ◽  
...  

AbstractCytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anderson B. Guimaraes-Costa ◽  
John P. Shannon ◽  
Ingrid Waclawiak ◽  
Jullyanna Oliveira ◽  
Claudio Meneses ◽  
...  

AbstractApart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


2015 ◽  
Vol 90 (5) ◽  
pp. 2316-2331 ◽  
Author(s):  
Nadeene E. Riddick ◽  
Fan Wu ◽  
Kenta Matsuda ◽  
Sonya Whitted ◽  
Ilnour Ourmanov ◽  
...  

ABSTRACTAfrican green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIVin vivo, while human-derived CXCR6 and GPR15 also appear to be usedin vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptorsin vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4+T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4+T cells and are potential alternative coreceptors for SIVagm usein vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals.IMPORTANCEAfrican green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cellsin vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptorsin vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entryin vitroand may serve as entry coreceptors for SIVagmin vivo, since their mRNAs were detected in AGM memory CD4+T cells, the preferred target cells of SIV.


2007 ◽  
Vol 88 (7) ◽  
pp. 2028-2034 ◽  
Author(s):  
H. Sittana El Mubarak ◽  
Selma Yüksel ◽  
Geert van Amerongen ◽  
Paul G. H. Mulder ◽  
Maowia M. Mukhtar ◽  
...  

Both rhesus and cynomolgus macaques have been used as animal models for measles vaccination and immunopathogenesis studies. A number of studies have suggested that experimental measles virus (MV) infection induces more-characteristic clinical features in rhesus than in cynomolgus monkeys. In the present study, both macaque species were infected with two different wild-type MV strains and clinical, virological and immunological parameters were compared. The viruses used were a genotype C2 virus isolated in The Netherlands in 1991 (MV-Bil) and a genotype B3 virus isolated from a severe measles case in Sudan in 1997 (MV-Sudan). Following infection, all rhesus monkeys developed a skin rash and conjunctivitis, which were less obvious in cynomolgus monkeys. Fever was either mild or absent in both species. Virus reisolation profiles from peripheral blood mononuclear cells and broncho-alveolar lavage cells and the kinetics of MV-specific IgM and IgG responses were largely identical in the two animal species. However, in animals infected with MV-Sudan, viraemia appeared earlier and lasted longer than in animals infected with MV-Bil. This was also reflected by the earlier appearance of MV-specific serum IgM antibodies after infection with MV-Sudan. Collectively, these data show that cynomolgus and rhesus macaques are equally susceptible to wild-type MV infection, although infection in the skin seems to follow a different course in rhesus macaques. MV-Sudan proved more pathogenic for non-human primates than MV-Bil, which may render it more suitable for use in future pathogenesis studies.


1999 ◽  
Vol 73 (2) ◽  
pp. 976-984 ◽  
Author(s):  
Mark Cayabyab ◽  
Gunilla B. Karlsson ◽  
Bijan A. Etemad-Moghadam ◽  
Wolfgang Hofmann ◽  
Tavis Steenbeke ◽  
...  

ABSTRACT In vivo passage of a poorly replicating, nonpathogenic simian-human immunodeficiency virus (SHIV-HXBc2) generated an efficiently replicating virus, KU-1, that caused rapid CD4+T-lymphocyte depletion and AIDS-like illness in monkeys (S. V. Joag, Z. Li, L. Foresman, E. B. Stephens, L.-J. Zhao, I. Adany, D. M. Pinson, H. M. McClure, and O. Narayan, J. Virol. 70:3189–3197, 1996). The env gene of the KU-1 virus was used to create a molecularly cloned virus, SHIV-HXBc2P 3.2, that differed from a nonpathogenic SHIV-HXBc2 virus in only 12 envelope glycoprotein residues. SHIV-HXBc2P 3.2 replicated efficiently and caused rapid and persistent CD4+ T-lymphocyte depletion in inoculated rhesus macaques. Compared with the envelope glycoproteins of the parental SHIV-HXBc2, the SHIV-HXBc2P 3.2 envelope glycoproteins supported more efficient infection of rhesus monkey peripheral blood mononuclear cells. Both the parental SHIV-HXBc2 and the pathogenic SHIV-HXBc2P 3.2 used CXCR4 but none of the other seven transmembrane segment receptors tested as a second receptor. Compared with the parental virus, viruses with the SHIV-HXBc2P 3.2 envelope glycoproteins were more resistant to neutralization by soluble CD4 and antibodies. Thus, changes in the envelope glycoproteins account for the ability of the passaged virus to deplete CD4+ T lymphocytes rapidly and specify increased replicative capacity and resistance to neutralization.


1999 ◽  
Vol 73 (12) ◽  
pp. 10320-10328 ◽  
Author(s):  
Keith G. Mansfield ◽  
Susan V. Westmoreland ◽  
Colin D. DeBakker ◽  
Susan Czajak ◽  
Andrew A. Lackner ◽  
...  

ABSTRACT The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20+ B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.


Author(s):  
Akram Miramin Mohammadi ◽  
Amir Javadi ◽  
Alireza Firooz ◽  
Ali Khamesipour

Background and Objectives: The surrogate marker (s) of cure and protection in intracellular pathogens is not yet well defined. The aim of this study was to compare the cytokine profile using whole blood cells (WBC) vs. peripheral blood mononuclear cells (PBMC) in healthy and cutaneous leishmaniasis (CL) volunteers. Materials and Methods: In this study, WBC and PBMC of the volunteers with history of CL (HCL), Active lesion (ACL) and healthy volunteers were collected. The WBC and PBMC were cultured and stimulated with either PHA or soluble Leish- mania antigens (SLA), after 72 hours, the supernatants were collected and the levels of IFN-γ, IL-5 and IL-10 were titrated using ELISA method. Results: The mean ± SD of cytokines using WBC and PBMC in cutaneous leishmaniasis volunteers stimulated with phy- tohemagglutin (PHA) or SLA are as follow, PHA, IFN-γ=2295±995 vs. 2339±1115, IL-10=853±309 vs. 1330±966, and IL-5=299±136 vs. 352+156, SLA, IFN-γ, 931±824 vs. 825±532, IL-10, 233±78 vs. 408±381, and IL-5, 185±59 vs. 217±76, respectively. There was no significant difference between the IFN-γ, IL-5 and IL-10 levels using WBC vs. PBMC. There was a strong correlation between the cytokine profiles using WBC and PBMC in cutaneous leishmaniasis volunteers. Conclusion: There was no significant difference between IFN-γ, IL-10, IL-5 levels in whole blood and PBMC of volunteers with active lesion or history of CL. Whole-blood culture which is easier, cheaper and more convenient could be used instead of PBMC to evaluate the cytokine profile in field conditions.


Sign in / Sign up

Export Citation Format

Share Document