Enhancing KDM5A and TLR activity improves the response to immune checkpoint blockade

2020 ◽  
Vol 12 (560) ◽  
pp. eaax2282 ◽  
Author(s):  
Liangliang Wang ◽  
Yan Gao ◽  
Gao Zhang ◽  
Dan Li ◽  
Zhenda Wang ◽  
...  

Immune checkpoint blockade (ICB) therapies are now established as first-line treatments for multiple cancers, but many patients do not derive long-term benefit from ICB. Here, we report that increased amounts of histone 3 lysine 4 demethylase KDM5A in tumors markedly improved response to the treatment with the programmed cell death protein 1 (PD-1) antibody in mouse cancer models. In a screen for molecules that increased KDM5A abundance, we identified one (D18) that increased the efficacy of various ICB agents in three murine cancer models when used as a combination therapy. D18 potentiated ICB efficacy through two orthogonal mechanisms: (i) increasing KDM5A abundance, which suppressed expression of the gene PTEN (encoding phosphatase and tensin homolog) and increased programmed cell death ligand 1 abundance through a pathway involving PI3K-AKT-S6K1, and (ii) activating Toll-like receptors 7 and 8 (TLR7/8) signaling pathways. Combination treatment increased T cell activation and expansion, CD103+ tumor-infiltrating dendritic cells, and tumor-associated M1 macrophages, ultimately enhancing the overall recruitment of activated CD8+ T cells to tumors. In patients with melanoma, a high KDM5A gene signature correlated with KDM5A expression and could potentially serve as a marker of response to anti–PD-1 immunotherapy. Furthermore, our results indicated that bifunctional agents that enhance both KDM5A and TLR activity warrant investigation as combination therapies with ICB agents.

ESMO Open ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e000544 ◽  
Author(s):  
Cinzia Solinas ◽  
Chunyan Gu-Trantien ◽  
Karen Willard-Gallo

Inducible T cell costimulator (ICOS, cluster of differentiation (CD278)) is an activating costimulatory immune checkpoint expressed on activated T cells. Its ligand, ICOSL is expressed on antigen-presenting cells and somatic cells, including tumour cells in the tumour microenvironment. ICOS and ICOSL expression is linked to the release of soluble factors (cytokines), induced by activation of the immune response. ICOS and ICOSL binding generates various activities among the diversity of T cell subpopulations, including T cell activation and effector functions and when sustained also suppressive activities mediated by regulatory T cells. This dual role in both antitumour and protumour activities makes targeting the ICOS/ICOSL pathway attractive for enhancement of antitumour immune responses. This review summarises the biological background and rationale for targeting ICOS/ICOSL in cancer together with an overview of the principal ongoing clinical trials that are testing it in combination with anti-cytotoxic T lymphocyte antigen-4 and anti-programmed cell death-1 or anti-programmed cell death ligand-1 based immune checkpoint blockade.


Author(s):  
Nádia Ghinelli Amôr ◽  
Paulo Sérgio da Silva Santos ◽  
Ana Paula Campanelli

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.


2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shuang Qin ◽  
Linping Xu ◽  
Ming Yi ◽  
Shengnan Yu ◽  
Kongming Wu ◽  
...  

Abstract The emergence of immune checkpoint inhibitors (ICIs), mainly including anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies (mAbs), has shaped therapeutic landscape of some type of cancers. Despite some ICIs have manifested compelling clinical effectiveness in certain tumor types, the majority of patients still showed de novo or adaptive resistance. At present, the overall efficiency of immune checkpoint therapy remains unsatisfactory. Exploring additional immune checkpoint molecules is a hot research topic. Recent studies have identified several new immune checkpoint targets, like lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and so on. The investigations about these molecules have generated promising results in preclinical studies and/or clinical trials. In this review, we discussed the structure and expression of these newly-characterized immune checkpoints molecules, presented the current progress and understanding of them. Moreover, we summarized the clinical data pertinent to these recent immune checkpoint molecules as well as their application prospects.


2020 ◽  
Vol 5 (43) ◽  
pp. eaba7107
Author(s):  
Natasha Khatwani ◽  
Asha B. Pillai

PD-L1:CD80 cis-heterodimer formation preferentially blocks CTLA-4 trans-signaling while allowing CD28-mediated effector T cell activation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Muhammet Ozer ◽  
Andrew George ◽  
Suleyman Yasin Goksu ◽  
Thomas J. George ◽  
Ilyas Sahin

The prevalence of primary liver cancer is rapidly rising all around the world. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Unfortunately, the traditional treatment methods to cure HCC showed poor efficacy in patients who are not candidates for liver transplantation. Until recently, tyrosine kinase inhibitors (TKIs) were the front-line treatment for unresectable liver cancer. However, rapidly emerging new data has drastically changed the landscape of HCC treatment. The combination treatment of atezolizumab plus bevacizumab (immunotherapy plus anti-VEGF) was shown to provide superior outcomes and has become the new standard first-line treatment for unresectable or metastatic HCC. Currently, ongoing clinical trials with immune checkpoint blockade (ICB) have focused on assessing the benefit of antibodies against programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- associated antigen 4 (CTLA-4) as monotherapies or combination therapies in patients with HCC. In this review, we briefly discuss the mechanisms underlying various novel immune checkpoint blockade therapies and combination modalities along with recent/ongoing clinical trials which may generate innovative new treatment approaches with potential new FDA approvals for HCC treatment in the near future.


2020 ◽  
Vol 6 (5(74)) ◽  
pp. 9-21
Author(s):  
A.A. Yusupbekov ◽  
S.V. Kamishov ◽  
A.A. Adilkhodjaev ◽  
Kh. J. Islamov ◽  
D.M. Egamberdiev

Gastrointestinal (GI) cancers are a group of highly aggressive malignancies with a huge disease burden worldwide. There is clearly a significant unmet need for new drugs and therapies to further improve the treatment outcomes of GI malignancies. Immunotherapy is a novel treatment strategy that is emerging as an effective and promising treatment option against several types of cancers. CTLA-4 and PD-1 are critical immune checkpoint molecules that negatively regulate T cell activation via distinct mechanisms. Immune checkpoint blockade with antibodies directed against these pathways has already shown clinical efficacy that has led to their FDA approval in the treatment of several solid tumors including melanoma, non-small cell lung cancer, renal cell carcinoma, urothelial carcinoma, and head and neck cancer. This review will summarize the current clinical progress of modern immunotherapy in the field of GI tumors, with a special focus on immune checkpoint blockade


Blood ◽  
2018 ◽  
Vol 132 (23) ◽  
pp. 2484-2494 ◽  
Author(s):  
Monika Herrmann ◽  
Christina Krupka ◽  
Katrin Deiser ◽  
Bettina Brauchle ◽  
Anetta Marcinek ◽  
...  

Abstract The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell–engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.


2020 ◽  
Vol 14 (11) ◽  
pp. 955-967
Author(s):  
Li Wang ◽  
Shijia Yu ◽  
Yelin Yin ◽  
Ying Hao

Aim: The signal transducer and activator of transcription (STAT) family has been documented. However, the role of STATs in thyroid cancer was not fully studied. Materials & methods: A survival analysis of STATs was performed. The function modulated by STAT6 was examined. The role of STAT6 in cancer immune infiltrates and immune checkpoint blockade molecules was investigated. Results: Only low STAT6 expression correlated with worse survival. STAT6 is involved in cell cycle, cell adhesion, apoptosis and notch signaling pathways. STAT6 was significantly positively associated with immune infiltration of B cells, CD4+ T cells, neutrophils, macrophages, dendritic cells and the immune checkpoint blockade molecules programmed cell death-ligand 1, programmed cell death-ligand 2 and cytotoxic T-lymphocyte-associated protein 4. Conclusion: STAT6 may act as a prognostic biomarker and provide useful information for immunotherapy in thyroid carcinoma.


Sign in / Sign up

Export Citation Format

Share Document