scholarly journals Wind speed and shear associated with low-level jets over Northern Germany

2014 ◽  
Vol 23 (3) ◽  
pp. 295-304 ◽  
Author(s):  
Stefan Emeis
2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


2020 ◽  
Author(s):  
Jeanie A. Aird ◽  
Rebecca J. Barthelmie ◽  
Tristan J. Shepherd ◽  
Sara C. Pryor

Abstract. Output from high resolution simulations with the Weather Research and Forecasting (WRF) model are analyzed to characterize local low level jets (LLJ) over Iowa. Analyses using a detection algorithm wherein the wind speed above and below the jet maximum must be below 80 % of the jet wind speed within a vertical window of approximately 20 m–530 m a.g.l. indicate the presence of a LLJ in at least one of the 14700 4 km by 4 km grid cells over Iowa on 98 % of nights. Nocturnal LLJ are most frequently associated with stable stratification and low TKE and hence are more frequent during the winter months. The spatiotemporal mean LLJ maximum (jet core) wind speed is 9.55 ms−1 and the mean height is 182 m. Locations of high LLJ frequency and duration across the state are seasonally varying with a mean duration of 3.5 hours. LLJ are most frequent in the topographically complex northwest of the state in winter, and in the flatter northeast of the state in spring. Sensitivity of LLJ characteristics to the: i) LLJ definition and ii) vertical resolution at which the WRF output is sampled are examined. LLJ definitions commonly used in LLJ literature are considered in the first sensitivity analysis. These sensitivity analyses indicate that LLJ characteristics are highly variable with LLJ definition. Further, when the model output is down-sampled to lower vertical resolution, the maximum LLJ wind speed and mean height decrease, but spatial distributions of regions of high frequency and duration are conserved.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 132 ◽  
Author(s):  
Xuyao Zhang ◽  
Congxin Yang ◽  
Shoutu Li

The influence of the heights of low-level jets (LLJs) on the rotor power and aerodynamic loads of a horizontal axis wind turbine were investigated using the fatigue, aerodynamics, structures, and turbulence code. The LLJ and shear inflow wind fields were generated using an existing wind speed spectral model. We found that the rotor power predicted by the average wind speed of the hub height is higher than the actual power in relatively weak and shallow LLJ inflow conditions, especially when the LLJ height is located inside the rotor-swept area. In terms of aerodynamic loads, when the LLJ height is located inside the rotor-swept area, the root mean square (RMS) rotor thrust coefficient and torque coefficient increase, while the RMS rotor unbalanced aerodynamic load coefficients, including lateral force, longitudinal force, tilt moment, and yaw moment, decreased. This means that the presence of both positive and negative wind shear in the rotor-swept area not only increases the rotor power but also reduces the unbalanced aerodynamic loads, which is beneficial to the operation of wind turbine. Power spectrum analysis shows no obvious difference in the power spectrum characteristics of the rotor torque and thrust in LLJ inflow conditions with different heights.


2019 ◽  
Vol 16 ◽  
pp. 85-93 ◽  
Author(s):  
Astrid Ziemann ◽  
Manuela Starke ◽  
Tina Leiding

Abstract. The increasing hub height of wind turbines aims at optimizing the wind energy yield at one location and offers the possibility to provide new areas for wind power, for example forests. Inhomogeneous environmental conditions of locations for wind turbines as well as the hub heights of more than 100 m cause challenges for flow models and their potential for wind power assessment. This includes special features of the wind field like low-level jets (LLJs), frequently observed local wind maxima in the nocturnal boundary layer. To characterize the dependencies of LLJs, the micro-scale model HIRVAC2D (HIgh Resolution Vegetation Atmosphere Coupler 2D) is applied in the study. The model HIRVAC2D is capable of modelling different vegetation types by explicitly considering the highly resolved structure of varying plant parameters. Beyond that, the model enables the resolution of temporally variable atmospheric circulation patterns during day- and night-time with typical thermal stratifications. In this way, HIRVAC2D is suitable to capture the nocturnal LLJ development and its characteristics. Results of several HIRVAC2D simulations are presented in order to deduce quantitatively the sensitivity of LLJs to vegetation and model parameters as well as meteorological quantities. It is shown that the geostrophic wind speed is an important criterion for the development of LLJs within a height range between 50 and 300 m. For a geostrophic wind speed of 4 m s−1, a nocturnal LLJ occurs remarkably more frequent as for a wind speed of 10 m s−1. To interpret and evaluate this result regarding possible wind power applications, a frequency distribution of the geostrophic wind speed was calculated over 30 years exemplarily at two locations using the meso-scale model COSMO in climate mode. Additionally, the type of land use has an impact on the height and intensity of LLJs. For a grassland site, the nocturnal LLJ is noticeably more frequent in the considered height range, but with a smaller wind speed and at a lower height above ground in comparison to deciduous or coniferous forests.


Author(s):  
Aristofanis Tsiringakis ◽  
Natalie E. Theeuwes ◽  
Janet F. Barlow ◽  
Gert-Jan Steeneveld

AbstractUnderstanding the physical processes that affect the turbulent structure of the nocturnal urban boundary layer (UBL) is essential for improving forecasts of air quality and the air temperature in urban areas. Low-level jets (LLJs) have been shown to affect turbulence in the nocturnal UBL. We investigate the interaction of a mesoscale LLJ with the UBL during a 60-h case study. We use observations from two Doppler lidars and results from two high-resolution numerical-weather-prediction models (Weather Research and Forecasting model, and the Met Office Unified Model for limited-area forecasts for the U.K.) to study differences in the occurrence frequency, height, wind speed, and fall-off of LLJs between an urban (London, U.K.) and a rural (Chilbolton, U.K.) site. The LLJs are elevated ($$\approx $$ ≈ 70 m) over London, due to the deeper UBL, while the wind speed and fall-off are slightly reduced with respect to the rural LLJ. Utilizing two idealized experiments in the WRF model, we find that topography strongly affects LLJ characteristics, but there is still a substantial urban influence. Finally, we find that the increase in wind shear under the LLJ enhances the shear production of turbulent kinetic energy and helps to maintain the vertical mixing in the nocturnal UBL.


2019 ◽  
Vol 4 (2) ◽  
pp. 193-209 ◽  
Author(s):  
Peter C. Kalverla ◽  
James B. Duncan Jr. ◽  
Gert-Jan Steeneveld ◽  
Albert A. M. Holtslag

Abstract. Ten years of ERA5 reanalysis data are combined with met-mast and lidar observations from 10 offshore platforms to investigate low-level jet characteristics over the Dutch North Sea. The objective of this study is to combine the best of two worlds: (1) ERA5 data with a large spatiotemporal extent but inherent accuracy limitations due to a relatively coarse grid and an incomplete representation of physical processes and (2) observations that provide more reliable estimates of the measured quantity but are limited in both space and time. We demonstrate the effect of time and range limitations on the reconstructed wind climate, with special attention paid to the impact on low-level jets. For both measurement and model data, the representation of wind speed is biased. The limited temporal extent of observations leads to a wind speed bias on the order of ±1 m s−1 as compared to the long-term mean. In part due to data-assimilation strategies that cause abrupt discontinuities in the diurnal cycle, ERA5 also exhibits a wind speed bias of approximately 0.5 m s−1. The representation of low-level jets in ERA5 is poor in terms of a one-to-one correspondence, and the jets appear vertically displaced (“smeared out”). However, climatological characteristics such as the shape of the seasonal cycle and the affinity with certain circulation patterns are represented quite well, albeit with different magnitudes. We therefore experiment with various methods to adjust the modelled low-level jet rate to the observations or, vice versa, to correct for the erratic nature of the short observation periods using long-term ERA5 information. While quantitative uncertainty is still quite large, the presented results provide valuable insight into North Sea low-level jet characteristics. These jets occur predominantly for circulation types with an easterly component, with a clear peak in spring, and are concentrated along the coasts at heights between 50 and 200 m. Further, it is demonstrated that these characteristics can be used as predictors to infer the observed low-level jet rate from ERA5 data with reasonable accuracy.


2008 ◽  
Vol 136 (11) ◽  
pp. 4188-4205 ◽  
Author(s):  
Mark W. Seefeldt ◽  
John J. Cassano

Abstract An analysis of the presence and location of low-level jets (LLJs) across the Ross Ice Shelf region in Antarctica is presented based on the analysis of archived output from the real-time Antarctic Mesoscale Prediction System (AMPS). The method of self-organizing maps (SOMs) is used to objectively identify different patterns in column-averaged wind speed (over the approximately lowest 1200 m of the atmosphere) as an identifier to the location of LLJs. The results indicate three primary LLJs in the region. The largest and most dominant LLJ is along the Transantarctic Mountains by the Siple Coast and the southern end of the Ross Ice Shelf. The second LLJ extends from the base of Byrd Glacier and curves to the north passing by the eastern extremes of Ross Island. The third LLJ extends from the base of Reeves Glacier and curves to the north across the western Ross Sea. A strong seasonality is observed in the frequency and intensity of the LLJs with the highest values for wind speed and the size of the LLJ at a maximum during the winter and spring months.


2018 ◽  
Vol 146 (11) ◽  
pp. 3827-3844 ◽  
Author(s):  
Yu Du ◽  
Guixing Chen

Abstract Heavy rainfall occurred at both the inland frontal zone and coastal warm sector in southern China during 10–11 May 2014, which is a typical pattern in the early-summer rainy season. To clarify the key factors controlling the rainfall, we conduct an ensemble-based analysis using the operational global ensemble forecasts from ECMWF. The forecasts of frontal (warm sector) rainfall have a relatively small (large) spread and a small (large) bias of ensemble-mean amount, suggesting an obvious difference in the predictability. It is shown that double low-level jets (LLJs) in the southwesterly moist flow play a significant role in the heavy rainfall over southern China. The inland frontal rainband is closely related to the synoptic-system-related low-level jet (SLLJ) with maximum wind speed at 850–700 hPa, especially for its meridional wind component. The more intense cold front is accompanied by the stronger southwesterly SLLJ on the adjacent south side, favoring more precipitation near the front. The warm-sector heavy rainfall, a few hundred kilometers away from the front, is associated with the boundary layer jet (BLJ) at 925 hPa. The southerly BLJ occurs over the northern region of the South China Sea and reaches its maximum wind speed in the early morning. The variations of the BLJ are mainly induced by the surface low and related upper-level short-wave trough upstream. The large pressure gradient to the southeast of the surface low can accelerate the BLJ by increasing the geostrophic winds. The diurnal cycle of the low-level winds, seen in the climatology, also contributes in part to the development of the BLJ at night.


2021 ◽  
Vol 6 (4) ◽  
pp. 1015-1030
Author(s):  
Jeanie A. Aird ◽  
Rebecca J. Barthelmie ◽  
Tristan J. Shepherd ◽  
Sara C. Pryor

Abstract. Output from 6 months of high-resolution simulations with the Weather Research and Forecasting (WRF) model are analyzed to characterize local low-level jets (LLJs) over Iowa for winter and spring in the contemporary climate. Low-level jets affect rotor plane aerodynamic loading, turbine structural loading and turbine performance, and thus accurate characterization and identification are pertinent. Analyses using a detection algorithm wherein the wind speed above and below the jet maximum must be below 80 % of the jet wind speed within a vertical window of approximately 20–530 m a.g.l. (above ground level) indicate the presence of an LLJ in at least one of the 14 700 4 km×4 km grid cells over Iowa on 98 % of nights. Nocturnal LLJs are most frequently associated with stable stratification and low turbulent kinetic energy (TKE) and hence are more frequent during the winter months. The spatiotemporal mean LLJ maximum (jet core) wind speed is 9.55 m s−1, and the mean height is 182 m. Locations of high LLJ frequency and duration across the state are seasonally varying, with a mean duration of 3.5 h. The highest frequency occurs in the topographically complex northwest of the state in winter and in the flatter northeast of the state in spring. Sensitivity of LLJ characteristics to the (i) LLJ definition and (ii) vertical resolution at which the WRF output is sampled is examined. LLJ definitions commonly used in the literature are considered in the first sensitivity analysis. These sensitivity analyses indicate that LLJ characteristics are highly variable with definition. Use of different definitions identifies both different frequencies of LLJs and different LLJ events. Further, when the model output is down-sampled to lower vertical resolution, the mean jet core wind speed height decreases, but spatial distributions of regions of high frequency and duration are conserved. Implementation of a polynomial interpolation to extrapolate down-sampled output to full-resolution results in reduced sensitivity of LLJ characteristics to down-sampling.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1635
Author(s):  
Günther Heinemann ◽  
Rolf Zentek

Low-level jets (LLJs) are climatological features in polar regions. It is well known that katabatic winds over the slopes of the Antarctic ice sheet are associated with strong LLJs. Barrier winds occurring, e.g., along the Antarctic Peninsula may also show LLJ structures. A few observational studies show that LLJs occur over sea ice regions. We present a model-based climatology of the wind field, of low-level inversions and of LLJs in the Weddell Sea region of the Antarctic for the period 2002–2016. The sensitivity of the LLJ detection on the selection of the wind speed maximum is investigated. The common criterion of an anomaly of at least 2 m/s is extended to a relative criterion of wind speed decrease above and below the LLJ. The frequencies of LLJs are sensitive to the choice of the relative criterion, i.e., if the value for the relative decrease exceeds 15%. The LLJs are evaluated with respect to the frequency distributions of height, speed, directional shear and stability for different regions. LLJs are most frequent in the katabatic wind regime over the ice sheet and in barrier wind regions. During winter, katabatic LLJs occur with frequencies of more than 70% in many areas. Katabatic LLJs show a narrow range of heights (mostly below 200 m) and speeds (typically 10–20 m/s), while LLJs over the sea ice cover a broad range of speeds and heights. LLJs are associated with surface inversions or low-level lifted inversions. LLJs in the katabatic wind and barrier wind regions can last several days during winter. The duration of LLJs is sensitive to the LLJ definition criteria. We propose to use only the absolute criterion for model studies.


Sign in / Sign up

Export Citation Format

Share Document