scholarly journals In VitroandIn VivoEfficacy of Amphotericin B Combined with Posaconazole against Experimental Disseminated Sporotrichosis

2015 ◽  
Vol 59 (8) ◽  
pp. 5018-5021 ◽  
Author(s):  
Débora Nunes Mario ◽  
Josep Guarro ◽  
Janio Morais Santurio ◽  
Sydney Hartz Alves ◽  
Javier Capilla

ABSTRACTWe evaluated the combination of posaconazole with amphotericin Bin vitroand in a murine model of systemic infections caused bySporothrix brasiliensisandSporothrix schenckiisensu stricto.In vitrodata demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated.

2012 ◽  
Vol 56 (5) ◽  
pp. 2273-2277 ◽  
Author(s):  
Fabiola Fernández-Silva ◽  
Javier Capilla ◽  
Emilio Mayayo ◽  
Josep Guarro

ABSTRACTWe developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e.,Sporothrix schenckiisensu stricto andSporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
A. Espinel-Ingroff ◽  
D. P. B. Abreu ◽  
R. Almeida-Paes ◽  
R. S. N. Brilhante ◽  
A. Chakrabarti ◽  
...  

ABSTRACT Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 μg/ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy.


2014 ◽  
Vol 58 (7) ◽  
pp. 3646-3649 ◽  
Author(s):  
Fabiola Fernández-Silva ◽  
Michaela Lackner ◽  
Javier Capilla ◽  
Emilio Mayayo ◽  
Deanna Sutton ◽  
...  

ABSTRACTIt has been argued that thein vitroactivity of caspofungin (CSP) is not a good predictor of the outcome of echinocandin treatmentin vivo. We evaluated thein vitroactivity of CSP and the presence ofFKSmutations in the hot spot 1 (HS1) region of theFKS1andFKS2genes in 17 Candida glabratastrains with a wide range of MICs. The efficacy of CSP against systemic infections from each of the 17 strains was evaluated in a murine model. No HS1 mutations were found in the eight strains showing MICs for CSP of ≤0.5 μg/ml, but they were present in eight of the nine strains with MICs of ≥1 μg/ml, i.e., three in theFKS1gene and five in theFKS2gene. CSP was effective for treating mice infected with strains with MICs of ≤0.5 μg/ml, showed variable efficacy in animals challenged with strains with MICs of 1 μg/ml, and did not work in those with strains with MICs of >1 μg/ml. In addition, mutations, including one reported for the first time, were found outside the HS1 region in theFKS2gene of six strains with different MICs, but their presence did not influence drug efficacy. Thein vitroactivity of CSP was compared with that of another echinocandin, anidulafungin, suggesting that the MICs of both drugs, as well as mutations in the HS1 regions of theFKS1andFKS2genes, are predictive of outcome.


2018 ◽  
Vol 18 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Luana da S.M. Forezi ◽  
Luana Pereira Borba-Santos ◽  
Mariana F.C. Cardoso ◽  
Vitor F. Ferreira ◽  
Sonia Rozental ◽  
...  

Sporotrichosis is a serious public health problem in Brazil that affects human patients and domestic animals, mainly cats. Thus, the search for new antifungal agents is required also due to the emergence and to the lack of effective drugs available in the therapeutic arsenal. The aim of this study was to evaluate the in vitro antifungal profile of two synthetic series of coumarin derivatives against Sporothrix schenckii and Sporothrix brasiliensis. The three-components synthetic routes used for the preparation of coumarin derivatives have proved to be quite efficient and compounds 16 and 17 have been prepared in good yields. The inhibitory activity of nineteen synthetic coumarins derivatives 16a-i and 17a-j were evaluated against Sporothrix spp. yeasts and the most potent compounds were 16b and 17i. However, according to concentrations able to inhibit (minimum inhibitory concentrations) and kill (minimum fungicidal concentrations) the cells, 17i was more effective than 16b against Sporothrix spp. Thus, 17i exhibited good antifungal activity against S. brasiliensis and S. schenckii, suggesting that it is an important scaffold for the development of novel antifungal agents.


2015 ◽  
Vol 59 (5) ◽  
pp. 2479-2487 ◽  
Author(s):  
Keerti Jain ◽  
Ashwni Kumar Verma ◽  
Prabhat Ranjan Mishra ◽  
Narendra Kumar Jain

ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.


2012 ◽  
Vol 56 (11) ◽  
pp. 6044-6047 ◽  
Author(s):  
Peiying Feng ◽  
M. Javad Najafzadeh ◽  
Jiufeng Sun ◽  
Sarah Ahmed ◽  
Liyan Xi ◽  
...  

ABSTRACTCyphellophora guyanensis(n= 15), otherCyphellophoraspecies (n= 11),Phialophora europaea(n= 43), and otherPhialophoraspecies (n= 12) were testedin vitroagainst nine antifungal drugs. The MIC90s across all of the strains (n= 81) were, in increasing order, as follows: posaconazole, 0.063 μg/ml; itraconazole, 0.5 μg/ml; voriconazole, 1 μg/ml; micafungin, 1 μg/ml; terbinafine, 2 μg/ml; isavuconazole, 4 μg/ml; caspofungin, 4 μg/ml; fluconazole, 8 μg/ml; amphotericin B, 16 μg/ml.


2018 ◽  
Vol 63 (2) ◽  
pp. e00904-18 ◽  
Author(s):  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña Guerrero ◽  
Eduardo Sesma Herrero ◽  
Iñigo Gamboa ◽  
...  

ABSTRACTConventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects againstLeishmania. In this study, thein vitroleishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested againstLeishmania majorandLeishmania amazonensisparasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated inL. amazonensisandL. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 thanL. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels ofLeishmaniagenes involved in the cell cycle, such astopoisomerase-2(TOP-2),PCNA, andMCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Claudy Oliveira dos Santos ◽  
Eva Kolwijck ◽  
Henrich A. van der Lee ◽  
Marlou C. Tehupeiory-Kooreman ◽  
Abdullah M. S. Al-Hatmi ◽  
...  

ABSTRACT Fungal keratitis is a common but severe eye infection in tropical and subtropical areas of the world. In regions with a temperate climate, the frequency of infection is rising in patients with contact lenses and following trauma. Early and adequate therapy is important to prevent disease progression and loss of vision. The management of Fusarium keratitis is complex, and the optimal treatment is not well defined. We investigated the in vitro activity of chlorhexidine and seven antifungal agents against a well-characterized collection of Fusarium isolates recovered from patients with Fusarium keratitis. The fungus culture collection of the Center of Expertise in Mycology Radboudumc/CWZ was searched for Fusarium isolates that were cultured from cornea scrapings, ocular biopsy specimens, eye swabs, and contact lens fluid containers from patients with suspected keratitis. The Fusarium isolates that were cultured from patients with confirmed keratitis were all identified using conventional and molecular techniques. Antifungal susceptibility testing was performed according to the EUCAST broth microdilution reference method. The antifungal agents tested included amphotericin B, voriconazole, posaconazole, miconazole, natamycin, 5-fluorocytosine, and caspofungin. In addition, the activity of chlorhexidine was determined. The fungal culture collection contained 98 Fusarium isolates of confirmed fungal keratitis cases from 83 Dutch patients and 15 Tanzanian patients. The isolates were collected between 2007 and 2017. Fusarium oxysporum (n = 24, 24.5%) was the most frequently isolated species followed by Fusarium solani sensu stricto (n = 18, 18.4%) and Fusarium petroliphilum (n = 11, 11.2%). Amphotericin B showed the most favorable in vitro inhibition of Fusarium species followed by natamycin, voriconazole, and chlorhexidine, while 5-fluorocytosine, posaconazole, miconazole, and caspofungin showed no relevant inhibiting effect. However, chlorhexidine showed fungicidal activity against 90% of F. oxysporum strains and 100% of the F. solani strains. Our study supports the clinical efficacy of chlorhexidine and therefore warrants its further clinical evaluation for primary therapy of fungal keratitis, particularly in low and middle income countries where fungal keratitis is much more frequent and, currently, antifungal eye drops are often unavailable.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


Sign in / Sign up

Export Citation Format

Share Document