scholarly journals Population Pharmacokinetics of Atazanavir in Patients with Human Immunodeficiency Virus Infection

2006 ◽  
Vol 50 (11) ◽  
pp. 3801-3808 ◽  
Author(s):  
Sara Colombo ◽  
Thierry Buclin ◽  
Matthias Cavassini ◽  
Laurent A. Décosterd ◽  
Amalio Telenti ◽  
...  

ABSTRACT Atazanavir (ATV) is a new azapeptide protease inhibitor recently approved and currently used at a fixed dose of either 300 mg once per day (q.d.) in combination with 100 mg ritonavir (RTV) or 400 mg q.d. without boosting. ATV is highly bound to plasma proteins and extensively metabolized by CYP3A4. Since ATV plasma levels are highly variable and seem to be correlated with both viral response and toxicity, dosage individualization based on plasma concentration monitoring might be indicated. This study aimed to assess the ATV pharmacokinetic profile in a target population of HIV patients, to characterize interpatient and intrapatient variability, and to identify covariates that might influence ATV disposition. A population analysis was performed with NONMEM with 574 plasma samples from a cohort of 214 randomly selected patients receiving ATV. A total of 346 randomly collected ATV plasma levels and 19 full concentration-time profiles at steady state were available. The pharmacokinetic parameter estimates were an oral clearance (CL) of 12.9 liters/h (coefficient of variation [CV], 26%), a volume of distribution of 88.3 liters (CV, 29%), an absorption rate constant of 0.405 h−1 (CV, 122%), and a lag time of 0.88 h. A relative bioavailability value was introduced to account for undercompliance due to infrequent follow-ups (0.81; CV, 45%). Among the covariates tested, only RTV significantly reduced CL by 46%, thereby increasing the ATV elimination half-life from 4.6 h to 8.8 h. The pharmacokinetic parameters of ATV were adequately described by a one-compartment population model. The concomitant use of RTV improved the pharmacokinetic profile. However, the remaining high interpatient variability suggests the possibility of an impact of unmeasured covariates, such as genetic traits or environmental influences. This population pharmacokinetic model, together with therapeutic drug monitoring and Bayesian dosage adaptation, can be helpful in the selection and adaptation of ATV doses.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S670-S671
Author(s):  
Ronald G Hall ◽  
Jotam Pasipanodya ◽  
William C Putnam ◽  
John Griswold ◽  
Sharmila Dissanaike ◽  
...  

Abstract Background Antimicrobial dosing in moderate/severe burns patients is complicated due to the potential unpredictable hyperdynamic pathophysiologic states including 1) hypoproteinemia, 2) acute kidney injury and 3) onset of septicemia. Therefore, distribution assumptions about the population pharmacokinetic (PopPK) profiles of either endogenous or xenobiotic pharmacophores in this patient population can lead to biased parameter estimates. In order to prevent potential bias an agnostic nonparametric adaptive grid approach to describe ceftolozane/tazobactam (C/T) PopPK profiles in patients with partial- and full-thickness burns was employed. Methods A human clinical PK study in burn patients was conducted using the standard approved dose of C/T (2 grams/1 gram). A single intravenous dose was administered over 60 minutes. Whole blood was obtained pre-dose and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 16, and 24 hours following the start of infusion. LC-MS/MS bioanalytical methods were developed, validated and employed to determine C/T concentrations in human plasma. PopPK were modeled using Pmetrics package for R. One-, two- and three-compartment models were examined and compared. The influence of several parameters, including %body surface area burns, creatinine clearance (CrCL), weight, albumin and age were tested. Results The bioanalytical method for determination of C/T in human plasma met all recommended criteria of the LC-MS/MS. Five males and one female (ages 24 to 66 years), contributed 148 plasma PK samples. The female had 35% partial-thickness burns. The males had full-thickness burns ranging from 27 to 66%. The median CrCL was 104 mL/min (range 73-148 mL/min). Two-compartment model with absorption (Ka) from compartment 1 to 2 and elimination from compartment 2 (Ke), with nonlinear interactions between C/T elimination and CrCL best described the data. Figure A show that bias was minimal. Importantly, both drugs exhibited marked variability for both volume and elimination (Table), since volume was bimodally distributed (Figure B). A) Observation-versus-Prediction; B) Estimated Ke, V and Ka population parameter densities Summary of pharmacokinetic parameters Conclusion C/T exhibited high variability surpassing that observed with severe infections, suggesting that dose adjustment and/or may be therapeutic drug monitoring may be needed to balance target attainment from dose-related toxicities. Disclosures Ronald G. Hall, II, PharmD, MSCS, Medical Titan Group (Grant/Research Support)Merck (Research Grant or Support)


2004 ◽  
Vol 48 (9) ◽  
pp. 3226-3232 ◽  
Author(s):  
Chantal Csajka ◽  
Catia Marzolini ◽  
Karin Fattinger ◽  
Laurent A. Décosterd ◽  
Amalio Telenti ◽  
...  

ABSTRACT Indinavir is currently used at a fixed dose of 800 mg either three times a day or twice a day in combination with 100 mg of ritonavir. Dosage individualization based on plasma concentration monitoring might, however, be indicated. This study aimed to assess the pharmacokinetic profile of indinavir in patients infected with human immunodeficiency virus to characterize interpatient and intrapatient variability and to build up a Bayesian approach for dosage adaptation. A population analysis was performed with the NONMEM computer program with 569 plasma samples from a cohort of 239 unselected patients receiving indinavir. A one-compartment model with first-order absorption was adapted, and the influences of clinical characteristics on oral clearance (CL) and distribution volume (V) were examined. Predicted average drug exposure and trough and peak concentrations were derived for each patient and correlated with efficacy and toxicity markers. The population estimates of CL were 32.4 liters/h for female and 42.0 liters/h for male patients; oral V was 65.7 liters; and the rate constant of absorption (Ka ) was 1.0 h−1. CL decreased by 63% with ritonavir intake and was moderately correlated to body weight. Both interpatient variability, best assigned to oral CL (coefficient of variation [CV], 39%) and Ka (CV, 67%), and intrapatient variability were large (CV, 41%; standard deviation, 670 μg/liter). In conclusion, initial indinavir dosage should be decided according to ritonavir intake and sex, prior to plasma concentration measurements. The high interpatient pharmacokinetic variability represents an argument for therapeutic drug monitoring.


2015 ◽  
Vol 101 (1) ◽  
pp. e1.41-e1
Author(s):  
Wei Zhao ◽  
Daolun Zhang ◽  
Thomas Storme ◽  
André Baruchel ◽  
Xavier Declèves ◽  
...  

BackgroundChildren with haematological malignancy represent an identified subgroup of the paediatric population with specific pharmacokinetic parameters. In these patients, inadequate empirical antibacterial therapy may result in infection-related morbidity and increased mortality, making optimization of the dosing regimen essential. As paediatric data are limited, our aim was to evaluate the population pharmacokinetics of teicoplanin in order to define the appropriate dosing regimen in this high-risk population.MethodsThe current dose of teicoplanin was evaluated in children with haematological malignancy. Population pharmacokinetics of teicoplanin was analysed using NONMEM software. The dosing regimen was optimised based on the final model.ResultsEighty-five children (age range: 0.5 to 16.9 years) were included. Therapeutic drug monitoring and opportunistic samples (n=143) were available for analysis. With the current recommended dose of 10 mg/kg/day, 41 children (48%) had sub-therapeutic steady-state trough concentrations (Css,min<10 mg/liter). A two-compartment pharmacokinetic model with first-order elimination was developed. Systematic covariate analysis identified that bodyweight (size) and creatinine clearance significantly influenced teicoplanin clearance. The model was validated internally. Its predictive performance was further confirmed in an external validation. In order to reach the target AUC of 750 mg·h/L, 18 mg/kg was required for infants, 14 mg/kg for children and 12 mg/kg for adolescents. A patient-tailored dose regimen was further developed and reduced variability in AUC and Css,min values compared to the mg/kg-basis dose, making the modelling approach an important tool for dosing individualization.ConclusionsThis first population pharmacokinetic study of teicoplanin in children with haematological malignancy provided evidence-based support to individualize teicoplanin therapy in this vulnerable population.


2021 ◽  
Vol 76 (5) ◽  
pp. 497-505
Author(s):  
Irina B. Bondareva ◽  
Sergey K. Zyryanov ◽  
Aleksandra M. Kazanova

Background. Meropenem, a broad spectrum carbapenem antibiotic, is often used for newborns despite of limited data available on neonatal pharmacokinetics. Due to pharmacokinetic and pharmacodynamic differences as well as to significant changes in the human body related to growth and maturation of organs and systems, direct scaling and dosing extrapolation from adults or older children with adjustment on patients weight can result in increased risk of toxicity or treatment failures. Aims to evaluate the pharmacokinetics of meropenem in premature neonates based on therapeutic drug monitoring data in real clinical settings. Materials. Of 53 pre-term neonates included in the pharmacokinetic/pharmacodynamic analysis, in 39 (73.6%) patients, gestational age ranged from 23 to 30 weeks. Population and individual pharmacokinetic parameter values were estimated by the NPAG program from the Pmetrics package based on peak-trough therapeutic drug monitoring. Samples were assayed by high-performance liquid chromatography. One-compartment pharmacokinetic model with zero-order input and first-order elimination was used to fit concentration data and to predict pharmacokinetic parameter (%T MIC of free drug) for virtual patients with simulated fast, moderate and slow meropenem elimination received different dosage by minimum inhibitory concentration (MIC) level. Univariate and multivariate regression analysis was used to evaluate the influence of patients covariates (gestational age, postnatal age, postconceptual age, body weight, creatinine clearance calculated by Schwartz formula, etc) on estimated meropenem pharmacokinetic parameters. Results. The identified population pharmacokinetic parameters of meropenem in pre-term newborns (elimination half-lives T1/2 = 1.93 0.341 h; clearance CL = 0.26 0.085 L/h/ kg; volume of distribution V = 0.71 0.22 L/h) were in good agreement with those published in the literature for adults, neonates and older children. Pharmacokinetic/pharmacodynamic modeling demonstrated that a meropenem dosage regimen of 90 mg/kg/day administered using prolonged 3-hour infusion every 8 hours should be considered as potentially effective therapy if nosocomial infections with resistant organisms (MIC 8 mg/L) are treated. Conclusions. Neonates and especially pre-term neonates have a great pharmacokinetic variability. Meropenem dosing in premature newborns derived from population pharmacokinetic/pharmacodynamic model can partly overcome the variability, but not all pharmacokinetic variability can be explained by covariates in a model. Further personalizing based on Bayesian forecasting approach and a patients therapeutic drug monitoring data can help to achieve desired pharmacodynamic target.


2015 ◽  
Vol 101 (1) ◽  
pp. e1.60-e1
Author(s):  
Tiphanie Adam de Beaumanis ◽  
Lisa Lynqsie Hjalgrim ◽  
Jacob Nersting ◽  
Jörg Breitkreutz ◽  
Yves Bertrand ◽  
...  

Background6-mercaptopurine (6-MP), a key drug for treatment of acute lymphoblastic leukemia (ALL), has until recently had no adequate formulation for pediatric patients. Several approaches have been taken but the only oral paraben-free 6-MP liquid formulation named Loulla was developed and evaluated in the target population. Preclinical and clinical evaluation was performed according to a Pediatric Investigation Plan, in order to apply for a Pediatric Use Marketing Authorization.MethodsThe pre-clinical study assessed the maximum tolerated dosage-volume and evaluated local mucosal toxicity of 28 daily administrations in treated compared to controls gold hamsters. The multi-centre clinical study was single-dose, open-label, crossover trial, conducted in 15 ALL children during maintenance therapy. The bioavailability and palatability of a single 50 mg fixed dose of Loulla compared to 50 mg registered tablets were evaluated in a random order on two consecutive days. Seven blood samples over 9 hours were obtained each day at to determine 6-MP pharmacokinetic parameters, including Tmax, Cmax, AUC0–9 and AUC0–∞. A questionnaire adapted to children testing Loulla palatability and preference for either Loulla or the usual 6-MP tablet was completed. Occurrence of adverse events was determined at study visits by vital sign measurements, patient's spontaneous reporting, investigator's questioning and clinical examination.ResultsThe preclinical study in gold hamsters showed that dosage-volume of 75 mg/kg/day was well tolerated. The relative bioavailability of liquid Loulla formulation compared to the reference presentation is 76% for AUC0-9 and AUC0-∞ and 80% for Cmax. The taste of Loulla and the mouth feeling after ingestion compare favorably to the tablet. No adverse event occurred.ConclusionPharmacokinetic, palatability and safety data support the use of Loulla in children.


2019 ◽  
Vol 38 (3) ◽  
pp. 323-331
Author(s):  
Bojana Golubović ◽  
Katarina Vučićević ◽  
Dragana Radivojević ◽  
Sandra Vezmar Kovačević ◽  
Milica Prostran ◽  
...  

Summary Background Due to wide intra- and inter-individual pharmacokinetic variability and narrow therapeutic index of sirolimus, the therapeutic drug monitoring (TDM) of sirolimus with detailed biochemical and clinical monitoring is necessary for dose individualization in kidney transplant patients. The purpose of the study was to explore and identify factors that contribute to pharmacokinetic variability by developing and validating a population model using routine TDM data and routinely monitored biochemical and clinical parameters. Methods The data obtained by routine monitoring of 38 patients over a period of one year from the sirolimus treatment initiation, were collected from patients’ records. Population analysis was performed using the software NONMEM®. The validity of the model was tested by the internal and external validation techniques. Results The pharmacokinetic variability was partially explained with patient’s age and liver function. CL/F was found to decrease with age. According to the developed model, sirolimus CL/F decreases by, in average, 37% in patients with aspartate aminotransferase (AST) greater than 37 IU/L. The internal and external validation confirmed the satisfactory prediction of the developed model. Conclusions The population modeling of routinely monitored data allowed quantification of the age and liver function influence on sirolimus CL/F. According to the final model, patients with compromised liver function expressed via AST values require careful monitoring and dosing adjustments. Proven good predictive performance makes this model a useful tool in everyday clinical practice.


2021 ◽  
pp. archdischild-2020-321381
Author(s):  
Samira Samiee-Zafarghandy ◽  
Tamara van Donge ◽  
Gerhard Fusch ◽  
Marc Pfister ◽  
George Jacob ◽  
...  

ObjectiveExploration of a novel therapeutic drug monitoring (TDM) strategy to personalise use of ibuprofen for closure of patent ductus arteriosus (PDA) in preterm neonates.DesignProspective, single-centre, open-label, pharmacokinetics study in preterm neonates.SettingNeonatal intensive care unit at McMaster Children’s Hospital.PatientsNeonates with a gestational age ≤28+6 weeks treated with oral ibuprofen for closure of a PDA.MethodsPopulation pharmacokinetic parameters, concentration-time profiles and exposure metrics were obtained using pharmacometric modelling and simulation.Main outcome measureAssociation between ibuprofen plasma concentrations measured at various sampling time points on the first day of treatment and attainment of the target exposure over the first 3 days of treatment (AUC0–72h >900 mg·hour/L).ResultsTwenty-three preterm neonates (median birth weight 780 g and gestational age 25.9 weeks) were included, yielding 155 plasma ibuprofen plasma samples. Starting from 8 hours’ postdose on the first day, a strong correlation between ibuprofen concentrations and AUC0–72h was observed. At 8 hours after the first dose, an ibuprofen concentration >20.5 mg/L was associated with a 90% probability of reaching the target exposure.ConclusionWe designed a novel and practical TDM strategy and have shown that the chance of reaching the target exposure (AUC0–72h >900 mg·hour/L) can be predicted with a single sample collection on the first day of treatment. This newly acquired knowledge can be leveraged to personalise ibuprofen dosing regimens and improve the efficacy of ibuprofen use for pharmacological closure of a PDA.


1993 ◽  
Vol 27 (9) ◽  
pp. 1034-1039 ◽  
Author(s):  
Ene I. Ette ◽  
Andrew W. Kelman ◽  
Catherine A. Howie ◽  
Brian Whiting

OBJECTIVE: To develop new approaches for evaluating results obtained from simulation studies used to determine sampling strategies for efficient estimation of population pharmacokinetic parameters. METHODS: One-compartment kinetics with intravenous bolus injection was assumed and the simulated data (one observation made on each experimental unit [human subject or animal]), were analyzed using NONMEM. Several approaches were used to judge the efficiency of parameter estimation. These included: (1) individual and joint confidence intervals (CIs) coverage for parameter estimates that were computed in a manner that would reveal the influence of bias and standard error (SE) on interval estimates; (2) percent prediction error (%PE) approach; (3) the incidence of high pair-wise correlations; and (4) a design number approach. The design number (Φ) is a new statistic that provides a composite measure of accuracy and precision (using SE). RESULTS: The %PE approach is useful only in examining the efficiency of estimation of a parameter considered independently. The joint CI coverage approach permitted assessment of the accuracy and reliability of all model parameter estimates. The Φ approach is an efficient method of achieving an accurate estimate of parameter(s) with good precision. Both the Φ for individual parameter estimation and the overall Φ for the estimation of model parameters led to optimal experimental design. CONCLUSIONS: Application of these approaches to the analyses of the results of the study was found useful in determining the best sampling design (from a series of two sampling times designs within a study) for efficient estimation of population pharmacokinetic parameters.


2011 ◽  
Vol 55 (12) ◽  
pp. 5500-5506 ◽  
Author(s):  
Marcus J. Rijken ◽  
Rose McGready ◽  
Aung Phae Phyo ◽  
Niklas Lindegardh ◽  
Joel Tarning ◽  
...  

ABSTRACTDihydroartemisinin-piperaquine is a fixed-dose artemisinin-based combination treatment. Some antimalarials have altered pharmacokinetics in pregnancy. Pregnant women in the 2nd or 3rd trimester and matched nonpregnant women with uncomplicated falciparum malaria were treated with a total of 6.4 mg/kg of body weight dihydroartemisinin and 51.2 mg/kg piperaquine once daily for 3 days. Venous blood samples were drawn at prespecified time points over 9 weeks. Plasma dihydroartemisinin and piperaquine concentrations were analyzed by liquid chromatography-mass spectrometry. Piperaquine and dihydroartemisinin pharmacokinetics were well described. There were no significant differences in total piperaquine exposure (P= 0.80) or drug exposure during the terminal elimination phase (72 h to infinity) (P= 0.64) between the two groups. The apparent volume of distribution of piperaquine was significantly smaller (602 liters/kg versus 877 liters/kg) in pregnant women than in nonpregnant women (P= 0.0057), and the terminal elimination half-life was significantly shorter (17.8 days versus 25.6 days;P= 0.0023). Dihydroartemisinin exposure after the first dose was significantly lower (844 h × ng/ml versus 1,220 h × ng/ml,P= 0.0021) in pregnant women, but there were no significant differences in total dihydroartemisinin exposure or maximum concentrations between the two groups. There were no significant differences in any pharmacokinetic parameters between the second and third trimester. These results obtained through noncompartmental analysis suggest that in the treatment of falciparum malaria, there are no clinically important differences in the pharmacokinetics of dihydroartemisinin or piperaquine between pregnant and nonpregnant women. However, a more detailed analysis using population pharmacokinetic modeling is needed to fully investigate the differences found for some of the pharmacokinetic parameters, such as the terminal half-life.


1996 ◽  
Vol 14 (5) ◽  
pp. 1581-1588 ◽  
Author(s):  
M Sandström ◽  
A Freijs ◽  
R Larsson ◽  
P Nygren ◽  
M L Fjällskog ◽  
...  

PURPOSE The aim of this study was to investigate the covariance between the pharmacokinetics of the three components of the FEC regimen, epirubicin (EPI), fluorouracil (5-FU), and the cyclophosphamide (CP) metabolite 4-hydroxycyclophosphamide (4-OHCP), in breast cancer patients. PATIENTS AND METHODS Data from 21 women were collected over a total of 35 cycles. 5-FU (300 to 600 mg/m2) and CP (300 to 600 mg/m2) were administered as bolus injections, whereas EPI (15 to 60 mg/m2) was administered either as a bolus injection or as an infusion. The pharmacokinetics of the component drugs were monitored using a limited sampling scheme. Population pharmacokinetic models for each of the three drugs were developed using the program NONMEM. RESULTS The data for 5-FU were best described by a one-compartment model with nonlinear elimination, where the maximal rate of elimination (Vmax) and the concentration at which the elimination was half-maximal (Km) were 105 mg/L.h and 27 mg/L, respectively. EPI concentration-time profiles showed a triexponential decline, with a mean terminal half-life of 24 hours and a clearance (CL) of 59 L/h. The elimination of 4-OHCP was monoexponential, with a mean half-life of 7 hours. The interindividual coefficients of variation (CVs) in CL were 30%, 22%, and 41% for 5-FU, EPI, and 4-OHCP, respectively. The corresponding values for intrapatient course-to-course variability in CL were 11%, 8%, and 27%. No significant correlation in any of the pharmacokinetic parameters between the drugs was found. CONCLUSION Individualization of dosing of the FEC regimen using therapeutic drug monitoring and attempts to find concentration-response relationships may be successful, but requires that the exposure of all three drugs is considered simultaneously.


Sign in / Sign up

Export Citation Format

Share Document