scholarly journals Use of Carbapenems against Clinical, Nontyphoid Salmonella Isolates: Results fromIn VitroandIn VivoAnimal Studies

2012 ◽  
Vol 56 (6) ◽  
pp. 2916-2922 ◽  
Author(s):  
Hung-Jen Tang ◽  
Chi-Chung Chen ◽  
Chun-Cheng Zhang ◽  
Kuo Chen Cheng ◽  
Shyh-Ren Chiang ◽  
...  

ABSTRACTThe emergence of multidrug-resistantSalmonellaisolates has created the need for new therapeutic agents. We evaluated the intracellular activity of four carbapenem compounds against clinical nontyphoidSalmonella(NTS) isolatesin vitroandex vivo. Subsequently, the efficacy of carbapenem treatment against selectedSalmonellaisolatesin vivowas assessed using a murine peritonitis model. The MIC50and MIC90for doripenem, ertapenem, imipenem, and meropenem against 126 NTS isolates were found to be 0.062 and 0.062, 0.015 and 0.015, 0.5 and 1, and 0.031 and 0.031 μg/ml, respectively. The intracellular killing effect of ertapenem was sustained for 24 h and was superior to that of imipenem, meropenem, and doripenem; its effect was comparable to that of ceftriaxone. Ertapenem demonstrated an excellent pharmacokinetic profile with a percent time above the MIC of 75.5% and an area under the concentration-time curve/MIC ratio of 20,733. When peritoneal exudate cells were examined directlyex vivofrom mice withSalmonella-induced peritonitis, cells from mice treated with ertapenem and ceftriaxone had intracellular and extracellular bacterial counts reduced 102- to 104-fold and exhibited killing effects similar to each other. The survival rates of mice inoculated with 1 × 105and 106CFU of a ceftriaxone-susceptibleSalmonellaisolate that were subsequently treated with ertapenem or ceftriaxone were 100% and 90%, respectively. When mice were inoculated with 5 × 104and 105CFU of a ceftriaxone-resistant and ciprofloxacin-resistantSalmonellaisolate, mice treated with ertapenem had a higher survival rate than mice treated with ceftriaxone (70% versus 0% and 50% versus 0%, respectively;P< 0.001). Our results suggest that ertapenem is at least as effective as ceftriaxone in treating murineSalmonellainfections and show that further clinical investigations on the potential use of ertapenem in treatment of humanSalmonellainfections are warranted.

2014 ◽  
Vol 59 (1) ◽  
pp. 136-144 ◽  
Author(s):  
A. M. Upton ◽  
S. Cho ◽  
T. J. Yang ◽  
Y. Kim ◽  
Y. Wang ◽  
...  

ABSTRACTNitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 againstMycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidalin vitroagainst replicating and nonreplicatingMycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity againstMycobacterium tuberculosisH37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10−7.In vitrostudies andin vivostudies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life.In vitrostudies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependentin vivobactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Jian Zhou ◽  
Kimberly R. Ledesma ◽  
Kai-Tai Chang ◽  
Henrietta Abodakpi ◽  
Song Gao ◽  
...  

ABSTRACT Multidrug-resistant (MDR) Acinetobacter baumannii is increasingly more prevalent in nosocomial infections. Although in vitro susceptibility of A. baumannii to minocycline is promising, the in vivo efficacy of minocycline has not been well established. In this study, the in vivo activity of minocycline was evaluated in a neutropenic murine pneumonia model. Specifically, we investigated the relationship between minocycline exposure and bactericidal activity using five A. baumannii isolates with a broad range of susceptibility (MIC ranged from 0.25 mg/liter to 16 mg/liter). The pharmacokinetics of minocycline (single dose of 25 mg/kg of body weight, 50 mg/kg, 100 mg/kg, and a humanized regimen, given intraperitoneally) in serum and epithelial lining fluid (ELF) were characterized. Dose linearity was observed for doses up to 50 mg/kg and pulmonary penetration ratios (area under the concentration-time curve in ELF from 0 to 24 h [AUCELF,0–24]/area under the concentration time curve in serum from 0 to 24 h [AUCserum,0–24]) ranged from 2.5 to 2.8. Pharmacokinetic-pharmacodynamics (PK-PD) index values in ELF for various dose regimens against different A. baumannii isolates were calculated. The maximum efficacy at 24 h was approximately 1.5-log-unit reduction of pulmonary bacterial burdens from baseline. The AUC/MIC ratio was the PK-PD index most closely correlating to the bacterial burden (r 2 = 0.81). The required AUCELF,0–24/MIC for maintaining stasis and achieving 1-log-unit reduction were 140 and 410, respectively. These findings could guide the treatment of infections caused by A. baumannii using minocycline in the future. Additional studies to examine resistance development during therapy are warranted.


2011 ◽  
Vol 55 (9) ◽  
pp. 4176-4182 ◽  
Author(s):  
Praveen Rishi ◽  
Simran Preet ◽  
Sushma Bharrhan ◽  
Indu Verma

ABSTRACTIn view of the emergence of multidrug-resistantSalmonellastrains, there is a need for therapeutic alternatives. To reduce the dose of antibiotic required in order to decrease the associated side effects, the present study was aimed at evaluating the synergism between cryptdin 2 (a Paneth cell antimicrobial peptide) and ampicillin (Amp) againstSalmonella entericaserovar Typhimurium. The synergy was evaluated in terms of the fractional bactericidal concentration (FBC) index, time-kill assay results (in vitro), macrophage functions, i.e., intracellular killing, lipid peroxidation, superoxide dismutase activity, and generation of nitrite (ex vivo), and decreases in CFU of salmonellae in livers, spleens, and small intestines of infected mice treated with cryptdin 2 and/or Amp (in vivo).In vitrosynergism between the two agents was observed on the basis of the FBC index and time-kill assays. When the agents were used in combination,ex vivostudies revealed an enhanced effect on macrophage functions, particularly exhibiting a synergetic effect in terms of SOD levels.In vivosynergy was indicated by larger log unit decreases in all target organs of mice treated with the combination than those for the drugs used alone. These results point toward the possible use of cryptdin 2 as an adjunct to ampicillin and may help in developing alternate strategies to combatSalmonellainfections.


2014 ◽  
Vol 59 (2) ◽  
pp. 950-959 ◽  
Author(s):  
Nicholas A. Malmquist ◽  
Sandeep Sundriyal ◽  
Joachim Caron ◽  
Patty Chen ◽  
Benoit Witkowski ◽  
...  

ABSTRACTCurrent antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promisingin vitroparasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines forin vitroandin vivoefficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potentin vitroactivity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractoryPlasmodium falciparumisolates. Activities againstex vivoclinical isolates of bothP. falciparumandPlasmodium vivaxwere similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy inin vivomouse models ofPlasmodium bergheiandP. falciparuminfection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Vien T. M. Le ◽  
Hoan N. Le ◽  
Marcos Gabriel Pinheiro ◽  
Kenneth J. Hahn ◽  
Mary L. Dinh ◽  
...  

ABSTRACT The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.


2016 ◽  
Vol 60 (11) ◽  
pp. 6859-6866 ◽  
Author(s):  
Zi Wei Chang ◽  
Benoit Malleret ◽  
Bruce Russell ◽  
Laurent Rénia ◽  
Carla Claser

ABSTRACTEx vivoassay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-termin vitroculture andex vivoantimalarial susceptibility assays are relatively cumbersome, relying onin vivopassage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stagePlasmodium berghei,P. yoelii, andP. vinckei vinckeiusing a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nylev Vargas-Cruz ◽  
Joel Rosenblatt ◽  
Ruth A Reitzel ◽  
Anne-Marie Chaftari ◽  
Ray Hachem ◽  
...  

CAUTI remains a serious healthcare issue for incontinent patients whose urine drainage is managed by catheters. A novel double-balloon Foley catheter was developed which was capable of irrigating the extraluminal catheter surfaces within the periurethral space between the urethral-bladder junction and meatus. The catheter has a retention cuff that is inflated to secure the catheter in the bladder and a novel irrigation cuff proximal to the urethral-bladder junction capable of providing periurethral irrigation from the urethral-bladder junction to the meatus. Uniform periurethral irrigation was demonstrated in an ex vivo porcine model by adding a dye to the antimicrobial urethral irrigation solution. An in vitro biofilm colonization model was adapted to study the ability of periurethral irrigation with a newly developed antimicrobial combination consisting of polygalacturonic acid + caprylic acid (PG + CAP) to prevent axial colonization of the extraluminal urethral indwelling catheter shaft by common uropathogens. The extraluminal surface of control catheters that were not irrigated formed biofilms along the entire axial urethral tract after 24 hours. Significant (p<0.001) inhibition of colonization was seen against multidrug-resistant Pseudomonas aeruginosa (PA), carbapenem-resistant Escherichia coli (EC), and carbapenem-resistant Klebsiella pneumoniae (KB). For other common uropathogens including Candida albicans (CA), Proteus mirabilis (PR), and Enterococcus faecalis (EF), a first irrigation treatment completely inhibited colonization of half of the indwelling catheter closest to the bladder and a second treatment largely disinfected the remaining intraurethral portion of the catheter towards the meatus. The novel Foley catheter and PG + CAP antimicrobial irrigant prevented biofilm colonization in an in vitro CAUTI model and merits further testing in an in vivo CAUTI prevention model.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Katharina Schaufler ◽  
Torsten Semmler ◽  
Lothar H. Wieler ◽  
Darren J. Trott ◽  
Johann Pitout ◽  
...  

ABSTRACT The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


2011 ◽  
Vol 55 (9) ◽  
pp. 4461-4464 ◽  
Author(s):  
Jutta Marfurt ◽  
Ferryanto Chalfein ◽  
Pak Prayoga ◽  
Frans Wabiser ◽  
Enny Kenangalem ◽  
...  

ABSTRACTFerroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potentin vitroefficacy against chloroquine (CQ)-resistantPlasmodium falciparumand CQ-sensitiveP. vivax. In the current study,ex vivoFQ activity was tested in multidrug-resistantP. falciparumandP. vivaxfield isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistantP. falciparumandP. vivax(median 50% inhibitory concentrations [IC50s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (forP. falciparum,r= 0.546 to 0.700,P< 0.001; forP. vivax,r= 0.677 to 0.821,P< 0.001). The observedex vivocross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of bothP. falciparumandP. vivaxhighlights a promising role for FQ as a lead antimalarial against CQ-resistantPlasmodiumand a useful partner drug for artemisinin-based combination therapy.


Sign in / Sign up

Export Citation Format

Share Document