scholarly journals Novel Cell-Killing Mechanisms of Hydroxyurea and the Implication toward Combination Therapy for the Treatment of Fungal Infections

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Amanpreet Singh ◽  
Ameeta Agarwal ◽  
Yong-jie Xu

ABSTRACT We have previously reported that an erg11 mutation affecting ergosterol synthesis and a hem13 mutation in the heme synthesis pathway significantly sensitize the fission yeast Schizosaccharomyces pombe to hydroxyurea (HU) (1, 2). Here we show that treatment with inhibitors of Erg11 and heme biosynthesis phenocopies the two mutations in sensitizing wild-type cells to HU. Importantly, HU synergistically interacts with the heme biosynthesis inhibitor sampangine and several Erg11 inhibitors, the antifungal azoles, in causing cell lethality. Since the synergistic drug interactions are also observed in the phylogenetically divergent Saccharomyces cerevisiae and the opportunistic fungal pathogen Candida albicans, the synergism is likely conserved in eukaryotes. Interestingly, our genetic data for S. pombe has also led to the discovery of a robust synergism between sampangine and the azoles in C. albicans. Thus, combinations of HU, sampangine, and the azoles can be further studied as a new method for the treatment of fungal infections.

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
A. Espinel-Ingroff ◽  
J. Turnidge ◽  
A. Alastruey-Izquierdo ◽  
F. Botterel ◽  
E. Canton ◽  
...  

ABSTRACT Although the Sensititre Yeast-One (SYO) and Etest methods are widely utilized, interpretive criteria are not available for triazole susceptibility testing of Candida or Aspergillus species. We collected fluconazole, itraconazole, posaconazole, and voriconazole SYO and Etest MICs from 39 laboratories representing all continents for (method/agent-dependent) 11,171 Candida albicans, 215 C. dubliniensis, 4,418 C. glabrata species complex, 157 C. guilliermondii (Meyerozyma guilliermondii), 676 C. krusei (Pichia kudriavzevii), 298 C. lusitaniae (Clavispora lusitaniae), 911 C. parapsilosis sensu stricto, 3,691 C. parapsilosis species complex, 36 C. metapsilosis, 110 C. orthopsilosis, 1,854 C. tropicalis, 244 Saccharomyces cerevisiae, 1,409 Aspergillus fumigatus, 389 A. flavus, 130 A. nidulans, 233 A. niger, and 302 A. terreus complex isolates. SYO/Etest MICs for 282 confirmed non-wild-type (non-WT) isolates were included: ERG11 (C. albicans), ERG11 and MRR1 (C. parapsilosis), cyp51A (A. fumigatus), and CDR2 and CDR1 overexpression (C. albicans and C. glabrata, respectively). Interlaboratory modal agreement was superior by SYO for yeast species and by the Etest for Aspergillus spp. Distributions fulfilling CLSI criteria for epidemiological cutoff value (ECV) definition were pooled, and we proposed SYO ECVs for S. cerevisiae and 9 yeast and 3 Aspergillus species and Etest ECVs for 5 yeast and 4 Aspergillus species. The posaconazole SYO ECV of 0.06 µg/ml for C. albicans and the Etest itraconazole ECV of 2 µg/ml for A. fumigatus were the best predictors of non-WT isolates. These findings support the need for method-dependent ECVs, as, overall, the SYO appears to perform better for susceptibility testing of yeast species and the Etest appears to perform better for susceptibility testing of Aspergillus spp. Further evaluations should be conducted with more Candida mutants.


mBio ◽  
2021 ◽  
Author(s):  
Laure Nicolas Annick Ries ◽  
Patricia Alves de Castro ◽  
Lilian Pereira Silva ◽  
Clara Valero ◽  
Thaila Fernanda dos Reis ◽  
...  

Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion.


2012 ◽  
Vol 79 (5) ◽  
pp. 1500-1507 ◽  
Author(s):  
Suk-Jin Ha ◽  
Heejin Kim ◽  
Yuping Lin ◽  
Myoung-Uoon Jang ◽  
Jonathan M. Galazka ◽  
...  

ABSTRACTSaccharomyces cerevisiaecannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes fromNeurospora crassa. Here, we report that an engineeredS. cerevisiaestrain expressing the putative hexose transporter geneHXT2.4fromScheffersomyces stipitisandgh1-1can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter whenHXT2.4is overexpressed inS. cerevisiae. However, cellobiose fermentation by the engineered strain expressingHXT2.4andgh1-1was much slower and less efficient than that by an engineered strain that initially expressedcdt-1andgh1-1. The rate of cellobiose fermentation by theHXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolvedS. cerevisiaestrain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higherKmand 4-fold higherVmaxvalues than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed inS. cerevisiaeare suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineeredS. cerevisiaestrains.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Lucy X. Li ◽  
Camaron R. Hole ◽  
Javier Rangel-Moreno ◽  
Shabaana A. Khader ◽  
Tamara L. Doering

ABSTRACT Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.


2014 ◽  
Vol 81 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Moeko Chujo ◽  
Shiori Yoshida ◽  
Anri Ota ◽  
Kousaku Murata ◽  
Shigeyuki Kawai

ABSTRACTSaccharomyces cerevisiaenormally cannot assimilate mannitol, a promising brown macroalgal carbon source for bioethanol production. The molecular basis of this inability remains unknown. We found that cells capable of assimilating mannitol arose spontaneously from wild-typeS. cerevisiaeduring prolonged culture in mannitol-containing medium. Based on microarray data, complementation analysis, and cell growth data, we demonstrated that acquisition of mannitol-assimilating ability was due to spontaneous mutations in the genes encoding Tup1 or Cyc8, which constitute a general corepressor complex that regulates many kinds of genes. We also showed that anS. cerevisiaestrain carrying a mutant allele ofCYC8exhibited superior salt tolerance relative to other ethanologenic microorganisms; this characteristic would be highly beneficial for the production of bioethanol from marine biomass. Thus, we succeeded in conferring the ability to assimilate mannitol onS. cerevisiaethrough dysfunction of Tup1-Cyc8, facilitating production of ethanol from mannitol.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Rui Yao ◽  
Pei Zhou ◽  
Chengjin Wu ◽  
Liming Liu ◽  
Jing Wu

ABSTRACT In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress. IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Anand Srinivasan ◽  
Kai P. Leung ◽  
Jose L. Lopez-Ribot ◽  
Anand K. Ramasubramanian

ABSTRACT Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies. IMPORTANCE Microorganisms are typically still grown in petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefitted other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale can be particularly valuable in cutting down time, cost, and reagent usage. This paper describes the development, characterization, and application of nanoscale culture of an opportunistic fungal pathogen, Candida albicans. Despite a more than 2,000-fold reduction in volume, the growth characteristics and drug response profiles obtained from the nanoscale cultures were comparable to the industry standards. The platform also enabled rapid identification of new drug candidates that were effective against C. albicans biofilms, which are a major cause of mortality in hospital-acquired infections.


2011 ◽  
Vol 10 (9) ◽  
pp. 1264-1268 ◽  
Author(s):  
Lorina G. Baker ◽  
Charles A. Specht ◽  
Jennifer K. Lodge

ABSTRACTCryptococcus neoformansis an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.


2014 ◽  
Vol 13 (10) ◽  
pp. 1278-1289 ◽  
Author(s):  
Frédérique Van Hauwenhuyse ◽  
Alessandro Fiori ◽  
Patrick Van Dijck

ABSTRACTMorphogenetic transitions of the opportunistic fungal pathogenCandida albicansare influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition inC. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects inC. albicansand suggest an association between ergosterol content and elongated growth upon Hsp90 compromise.


mBio ◽  
2021 ◽  
Author(s):  
Rocio Garcia-Rubio ◽  
Cristina Jimenez-Ortigosa ◽  
Lucius DeGregorio ◽  
Christopher Quinteros ◽  
Erika Shor ◽  
...  

Echinocandin drugs are a first-line therapy to treat invasive candidiasis, which is a major source of morbidity and mortality worldwide. The opportunistic fungal pathogen Candida glabrata is a prominent bloodstream fungal pathogen, and it is notable for rapidly developing echinocandin-resistant strains associated with clinical failure.


Sign in / Sign up

Export Citation Format

Share Document