scholarly journals Mosaic Structure of p1658/97, a 125-Kilobase Plasmid Harboring an Active Amplicon with the Extended-Spectrum β-Lactamase Gene blaSHV-5

2007 ◽  
Vol 51 (4) ◽  
pp. 1164-1171 ◽  
Author(s):  
M. Zienkiewicz ◽  
I. Kern-Zdanowicz ◽  
M. Gołȩbiewski ◽  
J. Żyliñska ◽  
P. Mieczkowski ◽  
...  

ABSTRACT Escherichia coli isolates recovered from patients during a clonal outbreak in a Warsaw, Poland, hospital in 1997 produced different levels of an extended-spectrum β-lactamase (ESBL) of the SHV type. The β-lactamase hyperproduction correlated with the multiplication of ESBL gene copies within a plasmid. Here, we present the complete nucleotide sequence of plasmid p1658/97 carried by the isolates recovered during the outbreak. The plasmid is 125,491 bp and shows a mosaic structure in which all modules constituting the plasmid core are homologous to those found in plasmids F and R100 and are separated by segments of homology to other known regions (plasmid R64, Providencia rettgeri genomic island R391, Vibrio cholerae STX transposon, Klebsiella pneumoniae or E. coli chromosomes). Plasmid p1658/97 bears two replication systems, IncFII and IncFIB; we demonstrated that both are active in E. coli. The presence of an active partition system (sopABC locus) and two postsegregational killing systems (pemIK and hok/sok) indicates that the plasmid should be stably maintained in E. coli populations. The conjugative transfer is ensured by the operons of the tra and trb genes. We also demonstrate that the plasmidic segment undergoing amplification contains the bla SHV-5 gene and is homologous to a 7.9-kb fragment of the K. pneumoniae chromosome. The amplicon displays the structure of a composite transposon of type I.

2005 ◽  
Vol 49 (8) ◽  
pp. 3289-3296 ◽  
Author(s):  
Elisabetta Mantengoli ◽  
Gian Maria Rossolini

ABSTRACT In Alcaligenes faecalis FL-424/98, a clinical isolate that produces the PER-1 extended-spectrum β-lactamase, the bla PER-1 gene was found to be carried on a 44-kb nonconjugative plasmid, named pFL424, that was transferred to Escherichia coli by electroporation. Investigation of the genetic context of the bla PER-1 gene in pFL424 by means of a combined cloning and PCR mapping approach revealed that the gene is associated with a transposonlike element of the Tn3 family. This 14-kb element is a Tn5393 derivative of original structure, named Tn5393d, which contains the transposition module and the strAB genes typical of other members of the Tn5393 lineage plus additional resistance determinants, including the bla PER-1 gene and a new allelic variant of the aphA6 aminoglycoside phosphotransferase gene, named aphA6b, whose product is active against kanamycin, streptomycin, and amikacin. Tn5393d apparently originated from the consecutive insertion of two composite transposons into a Tn5393 backbone carrying the aphA6b and the bla PER-1 genes, respectively. The putative composite transposon carrying bla PER-1, named Tn4176, is made of two original and nonidentical insertion sequences of the IS4 family, named IS1387a and IS1387b, of which one is interrupted by the insertion of an original insertion sequence of the IS30 family, named IS1066. In pFL424, Tn5393d is inserted into a Tn501-like mercury resistance transposon. Transposition of Tn5393d or modules thereof containing the bla PER-1 gene from pFL424 to small multicopy plasmids or to a bacterial artificial chromosome was not detected in an E. coli host harboring both replicons.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rasha M. M. Khairy ◽  
Zahra Atef Fathy ◽  
Doaa Mohamed Mahrous ◽  
Ebtisam S. Mohamed ◽  
Soha S. Abdelrahim

Abstract Background Diarrhoea, affecting children in developing countries, is mainly caused by diarrheagenic Escherichia coli (DEC). This study principally aimed to determine the prevalence of DEC pathotypes and Extended-spectrum β-lactamase (ESBL) genes isolated from children under 5 years old with diarrhea. Methods A total of 320 diarrhoea stool samples were investigated. E. coli isolates were investigated for genes specific for enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC) using polymerase chain reaction (PCR). Furthermore, antimicrobial susceptibility testing, detection of antibiotic resistance-genes and phylogenetic typing were performed. Results Over all, DEC were isolated from 66/320 (20.6%) of the children with diarrhoea. EAEC was the predominant (47%), followed by typical EPEC (28.8%) and atypical EPEC (16.6%). Co-infection by EPEC and EAEC was detected in (7.6%) of isolates. However, ETEC, EIEC and EHEC were not detected. Phylogroup A (47%) and B2 (43.9%) were the predominant types. Multidrug-resistance (MDR) was found in 55% of DEC isolates. Extended-spectrum β-lactamase (ESBL) genes were detected in 24 isolates (24 blaTEM and 15 blaCTX-M-15). Only one isolate harbored AmpC β-lactamase gene (DHA gene). Conclusion The study concluded that, EAEC and EPEC are important causative agents of diarrhoea in children under 5 years. MDR among DEC has the potential to be a big concern.


2010 ◽  
Vol 54 (11) ◽  
pp. 4914-4916 ◽  
Author(s):  
Laurent Poirel ◽  
Emilie Lagrutta ◽  
Peter Taylor ◽  
Jeanette Pham ◽  
Patrice Nordmann

ABSTRACT A multidrug-resistant Escherichia coli isolate recovered in Australia produced a carbapenem-hydrolyzing β-lactamase. Molecular investigations revealed the first identification of the bla NDM-1 metallo-β-lactamase gene in that country. In addition, this E. coli isolate expressed the extended-spectrum β-lactamase CTX-M-15, together with two 16S rRNA methylases, namely, ArmA and RmtB, conferring a high level of resistance to aminoglycosides.


2021 ◽  
Vol 9 (2) ◽  
pp. 367 ◽  
Author(s):  
Anna R. Holtmann ◽  
Diana Meemken ◽  
Anja Müller ◽  
Diana Seinige ◽  
Kathrin Büttner ◽  
...  

Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) represent major healthcare concerns. The role of wildlife in the epidemiology of these bacteria is unclear. The purpose of this study was to determine their prevalence in wild boars in Germany and to characterize individual isolates. A total of 375 fecal samples and 439 nasal swabs were screened for the presence of ESBL-/AmpC-E. coli and MRSA, respectively. The associations of seven demographic and anthropogenic variables with the occurrence of ESBL-/AmpC-E. coli were statistically evaluated. Collected isolates were subjected to antimicrobial susceptibility testing, molecular typing methods, and gene detection by PCR and genome sequencing. ESBL-/AmpC-E. coli were detected in 22 fecal samples (5.9%) whereas no MRSA were detected. The occurrence of ESBL-/AmpC-E. coli in wild boars was significantly and positively associated with human population density. Of the 22 E. coli, 19 were confirmed as ESBL-producers and carried genes belonging to blaCTX-M group 1 or blaSHV-12. The remaining three isolates carried the AmpC-β-lactamase gene blaCMY-2. Several isolates showed additional antimicrobial resistances. All four major phylogenetic groups were represented with group B1 being the most common. This study demonstrates that wild boars can serve as a reservoir for ESBL-/AmpC-producing and multidrug-resistant E. coli.


2001 ◽  
Vol 45 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Sabiha Y. Essack ◽  
Lucinda M. C. Hall ◽  
Devadas G. Pillay ◽  
Margaret Lynn McFadyen ◽  
David M. Livermore

ABSTRACT β-Lactamase production was investigated in cultures of 25Klebsiella pneumoniae isolates isolated at a hospital in Durban, South Africa, in 1994 and 1996. Twenty of these isolates gave ceftazidime MIC/ceftazidime plus clavulanate MIC ratios of ≥8, implying production of extended-spectrum β-lactamases (ESBLs), and DNA sequencing identified an ESBL gene (bla TEM-53) in a further two isolates. Pulsed-field gel electrophoresis (PFGE) defined 4 distinct strains among the 12 isolates collected in 1994 and 9 distinct strains among the 13 isolates collected in 1996. In three cases, multiple isolates from single patients varied in their PFGE profiles and antibiograms, implying mixed colonization or infection. Isoelectric focusing and DNA hybridization found both TEM and SHV enzymes and their genes in all 25 isolates. Many isolates had multiple identical or different β-lactamase gene variants, with at least 84bla SHV and bla TEM gene copies among the 25 organisms. Sequencing identified the genes for the SHV-1, -2, and -5 enzymes and for four new SHV types (SHV-19, -20, -21, and -22). These new SHV variants had novel mutations remote from sites known to affect catalytic activity. Sequencing also found the genes for TEM-1, TEM-53, and one novel type, TEM-63. All the isolates had multiple and diverse plasmids. These complex and diverse patterns of ESBL production and strain epidemiology are far removed from the concept of an ESBL outbreak and suggest a situation in which ESBL production has become endemic and in which evolution is generating a wide range of enzyme combinations. This complexity and diversity complicates patient management and the design of antibiotic use policies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elias Eger ◽  
Stefan E. Heiden ◽  
Katja Korolew ◽  
Claude Bayingana ◽  
Jules M. Ndoli ◽  
...  

Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes blaCTX–M–15, tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


Sign in / Sign up

Export Citation Format

Share Document