scholarly journals Emergence of Metallo-β-Lactamase NDM-1-Producing Multidrug-Resistant Escherichia coli in Australia

2010 ◽  
Vol 54 (11) ◽  
pp. 4914-4916 ◽  
Author(s):  
Laurent Poirel ◽  
Emilie Lagrutta ◽  
Peter Taylor ◽  
Jeanette Pham ◽  
Patrice Nordmann

ABSTRACT A multidrug-resistant Escherichia coli isolate recovered in Australia produced a carbapenem-hydrolyzing β-lactamase. Molecular investigations revealed the first identification of the bla NDM-1 metallo-β-lactamase gene in that country. In addition, this E. coli isolate expressed the extended-spectrum β-lactamase CTX-M-15, together with two 16S rRNA methylases, namely, ArmA and RmtB, conferring a high level of resistance to aminoglycosides.

2021 ◽  
Vol 9 (2) ◽  
pp. 367 ◽  
Author(s):  
Anna R. Holtmann ◽  
Diana Meemken ◽  
Anja Müller ◽  
Diana Seinige ◽  
Kathrin Büttner ◽  
...  

Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) represent major healthcare concerns. The role of wildlife in the epidemiology of these bacteria is unclear. The purpose of this study was to determine their prevalence in wild boars in Germany and to characterize individual isolates. A total of 375 fecal samples and 439 nasal swabs were screened for the presence of ESBL-/AmpC-E. coli and MRSA, respectively. The associations of seven demographic and anthropogenic variables with the occurrence of ESBL-/AmpC-E. coli were statistically evaluated. Collected isolates were subjected to antimicrobial susceptibility testing, molecular typing methods, and gene detection by PCR and genome sequencing. ESBL-/AmpC-E. coli were detected in 22 fecal samples (5.9%) whereas no MRSA were detected. The occurrence of ESBL-/AmpC-E. coli in wild boars was significantly and positively associated with human population density. Of the 22 E. coli, 19 were confirmed as ESBL-producers and carried genes belonging to blaCTX-M group 1 or blaSHV-12. The remaining three isolates carried the AmpC-β-lactamase gene blaCMY-2. Several isolates showed additional antimicrobial resistances. All four major phylogenetic groups were represented with group B1 being the most common. This study demonstrates that wild boars can serve as a reservoir for ESBL-/AmpC-producing and multidrug-resistant E. coli.


2020 ◽  
Vol 13 (12) ◽  
pp. 2752-2758
Author(s):  
R. Mandakini ◽  
P. Roychoudhury ◽  
P. K. Subudhi ◽  
H. Kylla ◽  
I. Samanta ◽  
...  

Aim: The present study was conducted to record the prevalence of multidrug-resistant (MDR), extended-spectrum β-lactamases (ESBLs) producing Escherichia coli from pig population of organized and unorganized farms of Mizoram and to record the presence of ESBLs, non-ESBLs, and integrons. Materials and Methods: Fecal samples were collected from pigs under organized (n=40) and unorganized (n=58) farms of Mizoram. Samples were processed for isolation and identification of E. coli by conventional techniques, BD Phoenix™ automated bacterial system, and polymerase chain reaction (PCR) based confirmatory test. All the isolates were subjected to antimicrobial sensitivity test by disk diffusion assay and ESBLs production by double-disk synergy test (DDST). The ESBLs producing isolates were subjected to PCR for determination of ESBLs genes and all the isolates were screened for non-ESBLs genes and integrons by PCR. Results: A total of 258 E. coli was isolated and identified from organized (n=120) and unorganized farms (n=138). Majority of the E. coli isolates exhibited high level of resistance against amoxicillin (Ax) (81.78%), cefalexin (85.42%), co-trimoxazole (50.78%), sulfafurazole (69.38%), tetracycline (65.89%), and trimethoprim (TR) (51.94%). Statistically highly significant (p<0.01) variations in resistance among the isolates from organized and unorganized farms were recorded in case of Ax, ampicillin, cephalexin, ciprofloxacin, co-trimoxazole, gentamicin, piperacillin, and TR. By DDST, 65.89% isolates were recorded as ESBLs producer, of which 82/120 (68.33%) and 88/138 (63.77%) were from organized and unorganized farms, respectively. A total of 29/258 (11.24%) isolates were positive for at least one ESBLs gene. blaTEM was most frequently (9.69%) gene, followed by blaCTX-M (5.04%) and blaCMY (0.78%). Altogether, 6 (5.00%), 4 (3.33%), and 2 (1.67%) isolates from the organized farms were positive for blaCTX-M, blaTEM, and blaCMY genes, respectively. Similarly, 21 (15.22%) and 7 (5.07%) isolates from the unorganized farms were positive for blaTEM and blaCTX-M genes, respectively. None of them were positive for blaSHV genes. Altogether 57 (22.09%), 9 (3.49%), 66 (25.58%), 78 (30.23%), 21 (8.14%), and 18 (6.98%) isolates were positive for tetA, tetB, sul1, sul2, aadA, and dfrla genes, respectively. The prevalence of non-ESBLs genes was higher in the E. coli isolates from the unorganized farms than organized farms. Conclusion: MDR and ESBLs producing E. coli are circulating among the pigs and their environment in Mizoram. Pigs under unorganized farms exhibited higher level of resistance against majority of the antimicrobials, including third-generation cephalosporins, which might be an indication of overuse or misuse of antibiotics under the unorganized piggery sectors in Mizoram.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


2017 ◽  
Vol 18 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Shinji Yamasaki ◽  
Tuyen Danh Le ◽  
Mai Quang Vien ◽  
Chinh Van Dang ◽  
Yoshimasa Yamamoto

AbstractEmergence and spread of antimicrobial-resistant bacteria, including extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, have become serious problems worldwide. Recent studies conducted in Vietnam revealed that ESBL-producing E. coli are widely distributed in food animals and people. CTX-M-9 and CTX-M-1 are the most prevalent β-lactamases among the identified ESBLs. Furthermore, most of the ESBL-producing E. coli isolates were multi-drug resistant. Residual antimicrobials such as sulfamethoxazole, trimethoprim, sulfadimidine, cephalexin, and sulfadiazine were also detected at a high level in both animal meats and environmental water collected from several cities, including Ho Chi Minh city and Can Tho city. These recent studies indicated that improper use of antimicrobials in animal-originated food production might contribute to the emergence and high prevalence of ESBL-producing E. coli in Vietnam. Although clonal ESBL-producing E. coli was not identified, CTX-M-55 gene-carrying plasmids with similar sizes (105–139 kb) have been commonly detected in the ESBL-producing E. coli strains isolated from various food animals and human beings. This finding strongly suggests that horizontal transfer of the CTX-M plasmid among various E. coli strains played a critical role in the emergence and high prevalence of ESBL-producing E. coli in Vietnam.


Author(s):  
Wibke Wetzker ◽  
Yvonne Pfeifer ◽  
Solvy Wolke ◽  
Andrea Haselbeck ◽  
Rasmus Leistner ◽  
...  

Background: The monitoring of antimicrobial resistance (AMR) in microorganisms that circulate in the environment is an important topic of scientific research and contributes to the development of action plans to combat the spread of multidrug-resistant (MDR) bacteria. As a synanthropic vector for multiple pathogens and a reservoir for AMR, flies can be used for surveillance. Methods: We collected 163 flies in the inner city of Berlin and examined them for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli genotypically and phenotypically. Results: The prevalence of ESBL-producing E. coli in flies was 12.9%. Almost half (47.6%) of the ESBL-positive samples showed a co-resistance to ciprofloxacin. Resistance to carbapenems or colistin was not detected. The predominant ESBL-type was CTX-M-1, which is associated with wildlife, livestock, and companion animals as a potential major source of transmission of MDR E. coli to flies. Conclusions: This field study confirms the permanent presence of ESBL-producing E. coli in an urban fly population. For continuous monitoring of environmental contamination with multidrug-resistant (MDR) bacteria, flies can be used as indicators without much effort.


2009 ◽  
Vol 54 (1) ◽  
pp. 546-550 ◽  
Author(s):  
James R. Johnson ◽  
Brian Johnston ◽  
Connie Clabots ◽  
Michael A. Kuskowski ◽  
Swaroop Pendyala ◽  
...  

ABSTRACT Among 40 Escherichia coli urine isolates from renal transplant recipients (Galveston, TX, 2003 to 2005), sequence type ST131 (O25:H4) was highly prevalent (representing 35% of isolates overall and 60% of fluoroquinolone-resistant isolates), virulent appearing, antimicrobial resistant (but extended-spectrum-cephalosporin susceptible), and associated with black race. Pulsotypes were diverse; some were linked to other locales. ST131 emerged significantly during the study period. These findings suggest that E. coli ST131 may constitute an important new multidrug-resistant threat to renal transplant recipients.


2014 ◽  
Vol 8 (03) ◽  
pp. 282-288 ◽  
Author(s):  
Hoda Hassan ◽  
Baha Abdalhamid

Introduction: The aim of this study was to determine the prevalence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Proteus mirabilis (P. mirabilis). In addition, different methods for detection of these enzymes, including the newly introduced CHROMagar ESBL, were evaluated. Methodology: A total of 382 Enterobacteriaceae clinical isolates were obtained from King Fahad Specialist Hospital – Dammam, during 2011 and screened for production of ESBL using advanced expert system of Vitek 2, CHROMagar and ESBL-E-strips. PCR assay was used to detect blaTEM, blaSHV, and blaCTX-M genes. Susceptibility to a panel of antibiotics was determined. Results: The overall proportion of ESBL-producing enterobacterial isolates was 30.6%, which was higher in E. coli (35.8%) than in K. pneumoniae (25.7%). ESBL genotypes showed remarkable increase in the CTX-M (97.4%) compared to SHV (23.1%). The predominant ESBL was CTX-M- 15 (92.1 %). No TEM ESBL was detected in this study. The Vitek2 showed the highest sensitivity (100%), and the CHROMagar had the lowest specificity (97.3%) compared to the molecular method. All isolates were susceptible to imipenem and meropenem. Conclusions: This study confirms a high level of blaCTX-M positive ESBL isolates are circulating in the Eastern Province of Saudi Arabia. The trend of a multidrug-resistant profile associated with the recovery of the blaCTX-M gene is alarming.


2017 ◽  
Vol 81 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Nahla O. Eltai ◽  
Elmoubasher A. Abdfarag ◽  
Hamad Al-Romaihi ◽  
Eman Wehedy ◽  
Mahmoud H. Mahmoud ◽  
...  

ABSTRACT Antibiotic resistance (AR) is a growing public health concern worldwide, and it is a top health challenge in the 21st century. AR among Enterobacteriaceae is rapidly increasing, especially in third-generation cephalosporins and carbapenems. Further, strains carrying mobilized colistin resistance (mcr) genes 1 and 2 have been isolated from humans, food-producing animals, and the environment. The uncontrolled use of antibiotics in food-producing animals is a major factor in the generation and spread of AR. No studies have been done to evaluate AR in the veterinary sector of Qatar. This study aimed at establishing primary baseline data for the prevalence of AR among food-producing animals in Qatar. Fecal samples (172) were obtained from two broiler farms and one live bird market in Qatar, and 90 commensal Escherichia coli bacteria were isolated and subjected to susceptibility testing against 16 clinically relevant antibiotics by using the E-test method. The results found that 81 (90%) of 90 isolates were resistant to at least one antibiotic, 14 (15.5%) of 90 isolates were colistin resistant, 2 (2.2%) of 90 isolates were extended-spectrum β-lactamase producers, and 2 (2.2%) of 90 isolates were multidrug resistant to four antibiotic classes. Extended-spectrum β-lactamase–producing E. coli and colistin-resistant isolates were confirmed by using double-disc susceptibility testing and PCR, respectively. Such a high prevalence of antibiotic-resistant E. coli could be the result of a long application of antibiotic treatment, and it is an indicator of the antibiotic load in food-producing animals in Qatar. Pathogens carrying AR can be easily transmitted to humans through consumption of undercooked food or noncompliance with hygiene practices, mandating prompt development and implementation of a stewardship program to control and monitor the use of antibiotics in the community and agriculture.


Sign in / Sign up

Export Citation Format

Share Document