scholarly journals Plasma and Intracellular (Peripheral Blood Mononuclear Cells) Pharmacokinetics of Once-Daily Raltegravir (800 Milligrams) in HIV-Infected Patients

2010 ◽  
Vol 55 (1) ◽  
pp. 72-75 ◽  
Author(s):  
José Moltó ◽  
Marta Valle ◽  
David Back ◽  
Samandhy Cedeño ◽  
Victoria Watson ◽  
...  

ABSTRACTThe aim of this study was to evaluate the plasma and intracellular pharmacokinetics of raltegravir in HIV-infected patients receiving once-daily raltegravir. Five HIV-infected patients on stable therapy with lopinavir-ritonavir monotherapy whose HIV-1 RNA load was <50 copies/ml were included in this open-label, pilot study. Raltegravir was added to the antiretroviral regimen at a dose of 800 mg once daily from days 0 to 10. On day 10, a full pharmacokinetic profile was obtained for each participant. Raltegravir concentrations in plasma and peripheral blood mononuclear cells (PBMCs) were determined by high-performance liquid chromatography with a fluorescence detector and by liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. The values of the raltegravir pharmacokinetic parameters in plasma and PBMCs were calculated by noncompartmental analysis. Raltegravir was well tolerated, and all participants completed the study. No differences in the times to the maximum concentration of raltegravir in plasma or the raltegravir half-lives were observed between plasma and PBMCs. The geometric mean raltegravir maximum concentration, the concentration at the end of the dosing interval, and the area under the concentration-time curve during the dose interval in plasma versus PBMCs were 2,640 ng/ml (range, 887 to 10,605 ng/ml) versus 199 ng/ml (range, 82 to 857 ng/ml) (geometric mean ratio [GMR], 13.30; 95% confidence interval [CI], 3.11 to 56.89;P= 0.003); 89 ng/ml (range, 51 to 200 ng/ml) versus 7 ng/ml (range, 2 to 15 ng/ml) (GMR, 13.21; 95% CI, 3.94 to 44.26;P= 0.001); and 12,200 ng·h/ml (range, 5,152 to 30,130 ng·h/ml) versus 909 ng·h/ml (range, 499 to 2,189 ng·h/ml) (GMR, 13.43; 95% CI, 5.13 to 35.16;P< 0.001), respectively. Raltegravir does not accumulate in PBMCs, with intracellular concentrations being about 1/10 of the concentrations in plasma. Despite once-daily dosing, mean raltegravir concentrations at the end of the dosing interval in plasma and PBMCs exceeded the reported protein-binding-adjusted 95% inhibitory concentration (IC95) and IC50for wild-type viral strains, respectively.

2004 ◽  
Vol 48 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Geoffrey J. Yuen ◽  
Yu Lou ◽  
Nancy F. Bumgarner ◽  
Jim P. Bishop ◽  
Glenn A. Smith ◽  
...  

ABSTRACT Once-daily administration of 300 mg of lamivudine in combination with other antiretroviral agents has been proposed as a possible way to optimize anti-human immunodeficiency virus (HIV) treatment and to facilitate adherence. A single-center, randomized, two-way, crossover study was conducted in 60 healthy subjects to compare the steady-state pharmacokinetics of lamivudine in plasma and its putative active anabolite, lamivudine 5′-triphosphate (lamivudine-TP), in peripheral blood mononuclear cells (PBMCs) following 7 days of treatment with lamivudine at 300 mg once daily and 7 days of the standard regimen of 150 mg twice daily. Serial blood samples were collected over 24 h for determination of plasma lamivudine concentrations by liquid chromatography-mass spectrometry and intracellular lamivudine-TP concentrations in peripheral blood mononuclear cells by high-performance liquid chromatography/radioimmunoassay methods. Pharmacokinetic parameters were calculated based on lamivudine and lamivudine-TP concentration-time data. Regimens were considered bioequivalent if 90% confidence intervals (CI) for the ratio (once daily/twice daily) of geometric least-squares (GLS) means for lamivudine and lamivudine-TP pharmacokinetic values fell within the acceptance range of 0.8 to 1.25. Steady-state plasma lamivudine pharmacokinetics following the once- and twice-daily regimens were bioequivalent with respect to the area under the drug concentration-time curve from 0 to 24 h at steady state (AUC24,ss) (GLS mean ratio, 0.94; 90% CI, 0.92, 0.97) and average plasma lamivudine concentration over the dosing interval (C ave,ss) (GLS mean ratio, 0.94; 90% CI, 0.92, 0.97). Steady-state intracellular lamivudine-TP pharmacokinetics after the once- and twice-daily regimens were bioequivalent with respect to AUC24,ss (GLS mean ratio, 0.99; 90% CI, 0.88, 1.11), C ave,ss (GLS mean ratio, 0.99; 90% CI, 0.88, 1.11), and maximum lamivudine concentration (C max,ss) (GLS mean ratio, 0.93; 90% CI, 0.81, 1.07). Lamivudine-TP trough concentrations were modestly lower (by 18 to 24%) during the once-daily regimen; the clinical importance of this is unclear, given the large intersubject variability in values that was observed (coefficient of variation, 48 to 124%). Once-daily lamivudine was as well tolerated as the twice-daily regimen. Overall, the results of this study suggest that for key AUC-related parameters, lamivudine at 300 mg once daily is pharmacokinetically equivalent to lamivudine at 150 mg twice daily.


Sign in / Sign up

Export Citation Format

Share Document