scholarly journals Penetration of Meropenem into Epithelial Lining Fluid of Patients with Ventilator-Associated Pneumonia

2011 ◽  
Vol 55 (4) ◽  
pp. 1606-1610 ◽  
Author(s):  
T. P. Lodise ◽  
F. Sorgel ◽  
D. Melnick ◽  
B. Mason ◽  
M. Kinzig ◽  
...  

ABSTRACTAntibiotic penetration to the infection site is critical for obtaining a good clinical outcome in patients with ventilator-associated pneumonia (VAP). Surprisingly few studies have quantified the penetration of β-lactam agents into the lung, as measured by the ratio of area under the concentration-time curve (AUC) in epithelial lining fluid (ELF) to AUC in plasma (AUCELF/AUCplasmaratio). These have typically involved noninfected patients. This study examines the penetration and pharmacodynamics of meropenem in the ELF among patients with VAP. Meropenem plasma and ELF concentration-time data were obtained from patients in a multicenter clinical trial. Concentration-time profiles in plasma and ELF were simultaneously modeled using a three-compartment model with zero-order infusion and first-order elimination and transfer (big nonparametric adaptive grid [BigNPAG]). A Monte Carlo simulation was performed to estimate the range of ELF/plasma penetration ratios one would expect to observe in patients with VAP, as measured by the AUCELF/AUCplasmaratio. The range of AUCELF/AUCplasmapenetration ratios predicted by the Monte Carlo simulation was large. The 10th percentile of lung penetration was 3.7%, while the 90th percentile of penetration was 178%. The variability of ELF penetration is such that if relatively high ELF exposure targets are required to attain multilog kill or resistance suppression for bacteria likePseudomonas aeruginosa, then even receiving the largest licensed dose of meropenem with an optimal prolonged infusion may not result in target attainment for a substantial fraction of the population.

2011 ◽  
Vol 55 (12) ◽  
pp. 5507-5511 ◽  
Author(s):  
Thomas P. Lodise ◽  
George L. Drusano ◽  
Jill M. Butterfield ◽  
Joshua Scoville ◽  
Mark Gotfried ◽  
...  

ABSTRACTAlthough vancomycin is often regarded as an agent that concentrates poorly in the lower respiratory tract, as determined from concentrations in epithelial lining fluid (ELF), few data are available. This study sought to determine the profile of vancomycin exposure in the ELF relative to plasma. Population modeling and Monte Carlo simulation were employed to estimate the penetration of vancomycin into ELF. Plasma and ELF pharmacokinetic (PK) data were obtained from 10 healthy volunteers. Concentration-time profiles in plasma and ELF were simultaneously modeled using a three-compartment model with zero-order infusion and first-order elimination and transfer using the big nonparametric adaptive grid (BigNPAG) program. Monte Carlo simulation with 9,999 subjects was performed to calculate the ELF/plasma penetration ratios by estimating the area under the concentration-time curve (AUC) in ELF (AUCELF) and plasma (AUCplasma) after a single simulated 1,000-mg dose. The mean (standard deviation) AUCELF/AUCplasmapenetration ratio was 0.675 (0.677), and the 25th, 50th, and 75th percentile penetration ratios were 0.265, 0.474, and 0.842, respectively. Our results indicate that vancomycin penetrates ELF at approximately 50% of plasma levels. To properly judge the adequacy of current doses and schedules employed in practice, future studies are needed to delineate the PK/PD (pharmacodynamics) target for vancomycin in ELF. If the PK/PD target in ELF is found to be consistent with the currently proposed target of an AUC/MIC of ≥400, suboptimal probability of target attainment would be expected when vancomycin is utilized for pneumonias due to MRSA (methicillin-resistantStaphylococcus aureus) with MICs in excess of 1 mg/liter.


2008 ◽  
Vol 52 (7) ◽  
pp. 2300-2304 ◽  
Author(s):  
Thomas P. Lodise ◽  
Mark Gotfried ◽  
Steven Barriere ◽  
George L. Drusano

ABSTRACT Telavancin is an investigational bactericidal lipoglycopeptide with a multifunctional mechanism of action, as demonstrated against methicillin-resistant Staphylococcus aureus. While the plasma pharmacokinetics have been described, the extent of the penetration of the drug into the lung, measured by the epithelial lining fluid (ELF), remains unknown. Population modeling and Monte Carlo simulation were employed to estimate the penetration of telavancin into ELF. Plasma and ELF pharmacokinetic data were obtained from 20 healthy volunteers, and the pharmacokinetic samples were assayed by a validated liquid chromatography-tandem mass spectrometry technique. Concentration-time profiles in plasma and ELF were simultaneously modeled using a three-compartment model with zero-order infusion and first-order elimination and transfer. The model parameters were identified in a population pharmacokinetic analysis (BigNPAG). Monte Carlo simulation of 9,999 subjects was performed to calculate the ELF/plasma penetration ratios by estimating the area under the concentration-time curve (AUC) for the drug in ELF (AUCELF) and for the free drug in plasma (free AUCplasma) from zero to infinity after a single dose. After the Bayesian step, the overall fits of the model to the data were good, and plots of predicted versus observed concentrations in plasma and ELF showed slopes and intercepts very close to the ideal values of 1.0 and 0.0, respectively. The median AUCELF/free AUCplasma penetration ratio was 0.73, and the 25th and 75th percentile value ratios were 0.43 and 1.24, respectively. In uninfected lung tissue, the median AUCELF is approximately 75% of the free AUCplasma.


2009 ◽  
Vol 53 (8) ◽  
pp. 3325-3330 ◽  
Author(s):  
Arnold Louie ◽  
Christine Fregeau ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACT The dose choice for Pseudomonas aeruginosa remains a matter of debate. The actual exposure targets required for multilog killing of organisms at the primary infection site have not been delineated. We studied Pseudomonas aeruginosa PAO1 using a murine model of pneumonia. We employed a large mathematical model to fit all the concentration-time data in plasma and epithelial lining fluid (ELF) as well as colony counts in lung simultaneously for all drug doses. Penetration into ELF was calculated to be approximately 77.7%, as indexed to the ratio of the area under the concentration-time curve for ELF (AUCELF) to the AUCplasma. We determined the ELF concentration-time profile required to drive a stasis response as well as 1-, 2-, or 3-log10(CFU/g) kill. AUC/MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required to drive these bacterial responses. Emergence of resistance was seen only at the two lowest doses (three of five animals at 50 mg/kg [body weight] and one of five animals at 100 mg/kg). The low exposure targets were likely driven by a low mutational frequency to resistance. Bridging to humans was performed using Monte Carlo simulation. With a 750-mg levofloxacin dose, target attainment rates fell below 90% at 4 mg/liter, 1 mg/liter, and 0.5 mg/liter for 1-, 2-, and 3-log kills, respectively. Given the low exposure targets seen with this strain, we conclude that levofloxacin at a 750-mg dose is not adequate for serious Pseudomonas aeruginosa pneumonia as a single agent. More isolates need to be studied to make these observations more robust.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Sandrine Marchand ◽  
Matthieu Boisson ◽  
Shachi Mehta ◽  
Christophe Adier ◽  
Olivier Mimoz ◽  
...  

ABSTRACT Amikacin and gentamicin pharmacokinetic behaviors after nebulization were determined by comparing plasma and pulmonary epithelial lining fluid (ELF) concentrations in rats after intratracheal and intravenous administrations. ELF areas under concentration-time curve were 874 and 162 times higher after nebulization than after intravenous administration for amikacin and gentamicin, respectively. Even if both molecules appear to be good candidates for nebulization, these results demonstrate a much higher targeting advantage of nebulization for amikacin than for gentamicin.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is an effective therapy for community-acquired bacterial pneumonia (CABP). Given its potent activity against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA), we sought to determine the pharmacodynamic activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with a therapeutic effect in the neutropenic mouse pneumonia model against 10 MSSA/MRSA strains. The area under the concentration-time curve (AUC)/MIC associated with 1-log kill was noted at 24-h epithelial lining fluid (ELF) and plasma AUC/MIC exposures of ∼2 (ELF range, <0.93 to 19; plasma range, <1.06 to 17) and 2-log kill was noted at 24-h ELF and plasma AUC/MIC exposures of ∼12 (ELF range, 2.5 to 130; plasma range, 3.5 to 151).


2020 ◽  
Vol 65 (1) ◽  
pp. e01698-20 ◽  
Author(s):  
Fekade B. Sime ◽  
Melissa Lassig-Smith ◽  
Therese Starr ◽  
Janine Stuart ◽  
Saurabh Pandey ◽  
...  

ABSTRACTThe aim of this study was to describe the pharmacokinetics of ceftolozane-tazobactam in plasma and cerebrospinal fluid (CSF) of infected critically ill patients. In a prospective observational study, critically ill patients (≥18 years) with an indwelling external ventricular drain received a single intravenous dose of 3.0 g ceftolozane-tazobactam. Serial plasma and CSF samples were collected for measurement of unbound ceftolozane and tazobactam concentration by liquid chromatography. Unbound concentration-time data were modeled in R using Pmetrics. Dosing simulations were performed using the final model. A three-compartment model adequately described the data from 10 patients. For ceftolozane, the median (interquartile range [IQR]) area under the unbound concentration-time curve from time zero to infinity (fAUC0-inf) in the CSF and plasma were 30 (19 to 128) h·mg/liter and 323 (183 to 414) h·mg/liter, respectively. For tazobactam, these values were 5.6 (2 to 24) h·mg/liter and 52 (36 to 80) h·mg/liter, respectively. Mean ± standard deviation (SD) CSF penetration ratios were 0.2 ± 0.2 and 0.2 ± 0.26 for ceftolozane and tazobactam, respectively. With the regimen of 3.0 g every 8 h, a probability of target attainment (PTA) of ≥0.9 for 40% fT>MIC in the CSF was possible only when MICs were ≤0.25 mg/liter. The CSF cumulative fractional response for Pseudomonas aeruginosa-susceptible MIC distribution was 73%. The tazobactam PTA for the minimal suggested exposure of 20% fT>1 mg/liter was 12%. The current maximal dose of ceftolozane-tazobactam (3.0 g every 8 h) does not provide adequate CSF exposure for treatment of Gram-negative meningitis or ventriculitis unless the MIC for the causative pathogen is very low (≤0.25 mg/liter).


2016 ◽  
Vol 60 (5) ◽  
pp. 3196-3198 ◽  
Author(s):  
Sandrine Marchand ◽  
Nicolas Grégoire ◽  
Julien Brillault ◽  
Isabelle Lamarche ◽  
Patrice Gobin ◽  
...  

ABSTRACTThe aim of this study was to determine aztreonam (ATM) membrane permeability using Calu-3 cells and its plasma and pulmonary epithelial lining fluid (ELF) pharmacokinetics in rats after intratracheal nebulization and intravenous administration (15 mg · kg−1). ATM exhibits low Calu-3 permeability (0.07 ± 0.02 × 10−6cm · s−1), and a high area under the ELF/unbound plasma concentration time curve between 0 and infinity (AUCELF/AUCu,plasma) ratio of 1,069 was observed after nebulization in rats. These results confirm that ATM is a low-permeability molecule and a good candidate for nebulization.


2013 ◽  
Vol 58 (1) ◽  
pp. 419-423 ◽  
Author(s):  
Odin J. Naderer ◽  
Keith A. Rodvold ◽  
Lori S. Jones ◽  
John Z. Zhu ◽  
Chester L. Bowen ◽  
...  

ABSTRACTGSK1322322 is a potent peptide deformylase inhibitor within vitroandin vivoactivity against multidrug-resistant skin and respiratory pathogens. This report provides plasma and intrapulmonary pharmacokinetics, safety, and tolerability of GSK1322322 after repeat (twice daily intravenous dosing for 4 days) dosing at 1,500 mg. Plasma samples were collected over the last 12-hour dosing interval of repeat dosing following the day 4 morning dose (the last dose). Bronchoalveolar lavage samples were collected once in each subject, either before or at 2 or 6 h after the last intravenous dose. Plasma area under the concentration-time curve (AUC0–τ) was 66.7 μg · h/ml, and maximum concentration of drug in serum (Cmax) was 25.4 μg/ml following repeat doses of intravenous GSK1322322. The time course of epithelial lining fluid (ELF) and alveolar macrophages (AM) mirrored the plasma concentration-time profile. The AUC0–τfor ELF and AM were 78.9 μg · h/ml and 169 μg · h/ml, respectively. The AUC0–τratios of ELF and AM to total plasma were 1.2 and 2.5, respectively. These ratios increased to 3.5 and 7.4, respectively, when unbound plasma was considered. These results are supportive of GSK1322322 as a potential antimicrobial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. (This study has been registered atClinicalTrials.govunder registration number NCT01610388.)


2002 ◽  
Vol 97 (5) ◽  
pp. 1218-1226 ◽  
Author(s):  
Diederik K. Van Sassenbroeck ◽  
Peter De Paepe ◽  
Frans M. Belpaire ◽  
Paul A. Boon ◽  
Walter A. Buylaert

Background Hypovolemia alters the effect of propofol in the rat by influencing the pharmacokinetics and the end organ sensitivity. We now studied the effect of hypovolemia on the anesthetic gamma-hydroxybutyrate (GHB) because in contrast with propofol it increases blood pressure. Methods Thirty-two rats were randomly assigned to undergo moderate hypovolemia or a control procedure. Each rat received either an infusion of sodium-GHB (390 mg x kg(-1) x 5 min(-1)) or the same volume of an equimolar solution of sodium chloride (6.9%). Plasma samples were taken for GHB assay (high-performance liquid chromatography) and the electroencephalography and blood pressure values were recorded. A two-compartment model with Michaelis-Menten elimination was fitted to the concentration-time data and a sigmoid E(max) model to the electroencephalographic effect effect site concentration curve allowing the study of the end organ sensitivity. Results Plasma concentration-time curves and the total volume of distribution in hypovolemic and normovolemic rats were comparable with only small but significant differences in central volume of distribution and the intercompartmental clearance. There was no significant difference either in the distribution from the plasma to the brain (k(e0)) or in the end organ sensitivity (EC50 = 335 +/- 76 microg/ml in control vs. 341 +/- 89 microg/ml in hypovolemic rats). GHB temporarily increased mean arterial pressure in both groups, which cannot be explained by the sodium salt alone. Conclusions Hypovolemia does not influence the overall concentration-time curve of GHB and induces no changes in the electroencephalographic effect of GHB in the rat. This difference with propofol may be due to the fact that it increases blood pressure but also due to its different pharmacokinetic properties.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2849-2854 ◽  
Author(s):  
N Stute ◽  
VM Santana ◽  
JH Rodman ◽  
MJ Schell ◽  
JN Ihle ◽  
...  

Fifteen children (age 1.2 to 9.4 years) with advanced neuroblastoma were treated with myelosuppressive chemotherapy (cyclophosphamide, cisplatin, doxorubicin) followed by 5 (n = 5), 10 (n = 5), or 15 (n = 5) micrograms/kg recombinant granulocyte colony-stimulating factor (rG- CSF) subcutaneously (SC) once daily for 10 days, starting the day after chemotherapy. Serial serum samples obtained on days 1 and 10 were analyzed for G-CSF activity by a specific proliferation assay using NFS- 60 cells. G-CSF serum concentration-time data were best described by a one-compartment model, with zero-order absorption and first-order elimination. After SC injection, absorption was prolonged, with peak concentrations of G-CSF (3 to 117 ng/mL) being reached after 4 to 12 hours. The relatively slow absorption, with a mean elimination half- life of 5.8 hours on day 1 and 4.5 hours on day 10, provided measurable G-CSF concentrations for the entire 24-hour dosing interval in all patients at each dosage level. The median apparent clearance of G-CSF on day 10 was significantly higher than on day 1 (0.57 v 0.31 mL/min/kg, P = .02), and was positively correlated with the absolute neutrophil count (ANC) (r2 = .33, P = .003). Systemic exposure to G-CSF was dose-related, but interpatient pharmacokinetic variability yielded overlap in area under the concentration-time curve (AUC) at all three dosage levels. Stepwise regression analysis showed that G-CSF AUC could be predicted by a model that includes rG-CSF dosage and ANC on the day of administration (r2 = .82, P = .0001).


Sign in / Sign up

Export Citation Format

Share Document