scholarly journals Pharmacodynamics of Cefquinome in a Neutropenic Mouse Thigh Model of Staphylococcus aureus Infection

2014 ◽  
Vol 58 (6) ◽  
pp. 3008-3012 ◽  
Author(s):  
Jing Wang ◽  
Qi Shan ◽  
Huanzhong Ding ◽  
Chaoping Liang ◽  
Zhenling Zeng

ABSTRACTCefquinome is a cephalosporin with broad-spectrum antibacterial activity, including activity againstStaphylococcus aureus. The objective of our study was to examine thein vivoactivity of cefquinome againstS. aureusstrains by using a neutropenic mouse thigh infection model. Cefquinome kinetics and protein binding in infected neutropenic mice were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS).In vivopostantibiotic effects (PAEs) were determined after a dose of 100 mg/kg of body weight in mice infected withS. aureusstrain ATCC 29213. The animals were treated by subcutaneous injection of cefquinome at doses of 2.5 to 320 mg/kg of body weight per day divided into 1, 2, 3, 6, or 12 doses over 24 h. Cefquinome exhibited time-dependent killing and producedin vivoPAEs at 2.9 h. The percentage of time that serum concentrations were above the MIC (%T>MIC) was the pharmacokinetic-pharmacodynamic (PK-PD) index that best described the efficacy of cefquinome. Subsequently, we employed a similar dosing strategy by using increasing total cefquinome doses that increased 4-fold and were administered every 4 h to treat animals infected with six additionalS. aureusisolates. A sigmoid maximum effect (Emax) model was used to estimate the magnitudes of the ratios of the %Tthat the free-drug serum concentration exceeded the MIC (%T>fMIC) associated with net bacterial stasis, a 0.5-log10CFU reduction from baseline, and a 1-log10CFU reduction from baseline; the respective values were 30.28 to 36.84%, 34.38 to 46.70%, and 43.50 to 54.01%. The clear PAEs and potent bactericidal activity make cefquinome an attractive option for the treatment of infections caused byS. aureus.

2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2011 ◽  
Vol 55 (11) ◽  
pp. 5325-5330 ◽  
Author(s):  
Yan Q. Xiong ◽  
Wessam Abdel Hady ◽  
Antoine Deslandes ◽  
Astrid Rey ◽  
Laurent Fraisse ◽  
...  

ABSTRACTCationic antimicrobial peptides (CAPs) play important roles in host immune defenses. Plectasin is a defensin-like CAP isolated from the saprophytic fungusPseudoplectania nigrella. NZ2114 is a novel variant of plectasin with potent activity against Gram-positive bacteria. In this study, we investigated (i) thein vivopharmacokinetic and pharmacodynamic (PK/PD) characteristics of NZ2114 and (ii) thein vivoefficacy of NZ2114 in comparison with those of two conventional antibiotics, vancomycin or daptomycin, in an experimental rabbit infective endocarditis (IE) model due to a methicillin-resistantStaphylococcus aureus(MRSA) strain (ATCC 33591). All NZ2114 regimens (5, 10, and 20 mg/kg of body weight, intravenously [i.v.], twice daily for 3 days) significantly decreased MRSA densities in cardiac vegetations, kidneys, and spleen versus those in untreated controls, except in one scenario (5 mg/kg, splenic MRSA counts). The efficacy of NZ2114 was clearly dose dependent in all target tissues. At 20 mg/kg, NZ2114 showed a significantly greater efficacy than vancomycin (P< 0.001) and an efficacy similar to that of daptomycin. Of importance, only NZ2114 (in 10- and 20-mg/kg regimens) prevented posttherapy relapse in cardiac vegetations, kidneys, and spleen, while bacterial counts in these target tissues continued to increase in vancomycin- and daptomycin-treated animals. Thesein vivoefficacies were equivalent and significantly correlated with three PK indices investigated:fCmax/MIC (the maximum concentration of the free, unbound fraction of a drug in serum divided by the MIC),fAUC/MIC (where AUC is the area under the concentration-time curve), andf%T>MIC(%T>MICis the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions), as analyzed by a sigmoid maximum-effect (Emax) model (R2> 0.69). The superior efficacy of NZ2114 in this MRSA IE model suggests the potential for further development of this compound for treating serious MRSA infections.


2011 ◽  
Vol 56 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Carlos A. Rodriguez ◽  
Maria Agudelo ◽  
Andres F. Zuluaga ◽  
Omar Vesga

ABSTRACTPrevious studies have shown that “bioequivalent” generic products of vancomycin are less effectivein vivoagainstStaphylococcus aureusthan the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assessin vivothe impact of exposure to innovator and generic products of vancomycin onS. aureussusceptibility. A clinical methicillin-resistantS. aureus(MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log10CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies thanS. aureusATCC 29213 but without vancomycin-intermediateS. aureus(VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Kavindra V. Singh ◽  
Truc T. Tran ◽  
Esteban C. Nannini ◽  
Vincent H. Tam ◽  
Cesar A. Arias ◽  
...  

ABSTRACT Certain Staphylococcus aureus strains exhibit an inoculum effect (InE) with cefazolin (CFZ) that has been associated with therapeutic failures in high-inoculum infections. We assessed the in vitro activities of ceftaroline (CPT), CFZ, and nafcillin (NAF) against 17 type A β-lactamase (βla)-producing, methicillin-susceptible S. aureus (MSSA) strains, including the previously reported TX0117, which exhibits the CFZ InE, and its βla-cured derivative, TX0117c. Additionally, we determined the pharmacokinetics of CPT in rats after single intramuscular doses of 20 and 40 mg/kg of body weight and evaluated the activities of CPT (40 mg/kg every 8 h [q8h]), CFZ, and NAF against TX0117 and TX0117c in a rat model of infective endocarditis. No InE was observed for CPT or NAF, whereas a marked InE was detected for CFZ (MIC, 8 to ≥128 μg/ml). CPT and NAF treatment against TX0117 resulted in mean bacterial counts of 2.3 and 2.1 log10 CFU/g in vegetations, respectively, compared to a mean of 5.9 log10 CFU/g in the CFZ-treated group (CPT and NAF versus CFZ, P = 0.001; CPT versus NAF, P = 0.9830). Both CFZ and CPT were efficacious against the βla-cured derivative, TX0117c, compared to time zero (t 0) (P = <0.0001 and 0.0015, respectively). Our data reiterate the in vivo consequences of the CFZ InE and show that CPT is not affected by this phenomenon. CPT might be considered for high-inoculum infections caused by MSSA exhibiting the CFZ InE.


2009 ◽  
Vol 53 (4) ◽  
pp. 1463-1467 ◽  
Author(s):  
H. F. Chambers ◽  
L. Basuino ◽  
B. A. Diep ◽  
J. Steenbergen ◽  
S. Zhang ◽  
...  

ABSTRACT Daptomycin is approved for treatment of Staphylococcus aureus bacteremia and right-sided endocarditis. Increases in daptomycin MICs have been associated with failure. A rabbit model of aortic valve endocarditis was used to determine whether MIC correlates with activity in vivo and whether a higher daptomycin dose can improve efficacy. Two related clinical S. aureus strains, one with a daptomycin MIC of 0.5 μg/ml and the other with a MIC of 2 μg/ml, were used to establish aortic valve endocarditis in rabbits. Daptomycin was administered once a day for 4 days at 12 mg/kg of body weight or 18 mg/kg to simulate doses in humans of 6 mg/kg and 10 mg/kg, respectively. Endocardial vegetations, spleens, and kidneys were harvested and quantitatively cultured. The strain with a MIC of 2 μg/ml had a survival advantage over the strain with a MIC of 0.5 μg/ml with >100 times more organisms of the former in endocardial vegetations at the 12-mg/kg dose in a dual-infection model. Both the 12-mg/kg dose and the 18-mg/kg dose completely eradicated the strain with a MIC of 0.5 from vegetations, spleens, and kidneys. The 12-mg/kg dose was ineffective against the strain with a MIC of 2 in vegetations; the 18-mg/kg dose produced a reduction of 3 log10 units in CFU in vegetations compared to the controls, although in no rabbit were organisms completely eliminated. Increasing the dose of daptomycin may improve its efficacy for infections caused by strains with reduced daptomycin susceptibility.


2011 ◽  
Vol 55 (7) ◽  
pp. 3453-3460 ◽  
Author(s):  
Arnold Louie ◽  
Weiguo Liu ◽  
Robert Kulawy ◽  
G. L. Drusano

ABSTRACTTorezolid phosphate (TR-701) is the phosphate monoester prodrug of the oxazolidinone TR-700 which demonstrates potentin vitroactivity against Gram-positive bacteria, including methicillin-susceptibleStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). The pharmacodynamics of TR-701 or TR-700 (TR-701/700) againstS. aureusis incompletely defined. Single-dose pharmacokinetic studies were conducted in mice for TR-701/700. Forty-eight-hour dose range and 24-hour dose fractionation studies were conducted in a neutropenic mouse thigh model ofS. aureusinfection using MRSA ATCC 33591 to identify the dose and schedule of administration of TR-701/700 that was linked with optimized antimicrobial effect. Additional dose range studies compared the efficacies of TR-701/700 and linezolid for one MSSA strain and one community-associated MRSA strain. In dose range studies, TR-701/700 was equally bactericidal against MSSA and MRSA. Mean doses of 37.6 and 66.9 mg/kg of body weight/day of TR-701/700 resulted in stasis and 1 log CFU/g decreases in bacterial densities, respectively, at 24 h, and mean doses of 35.3, 46.6, and 71.1 mg/kg/day resulted in stasis and 1 and 2 log CFU/g reductions, respectively, at 48 h. Linezolid administered at doses as high as 150 mg/kg/day did not achieve stasis at either time point. Dose fractionation studies demonstrated that the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the pharmacodynamic index for TR-701/700 that was linked with efficacy. TR-701/700 was highly active against MSSA and MRSA,in vivo, and was substantially more efficacious than linezolid, although linezolid's top exposure has half the human exposure. Dose fractionation studies showed that AUC/MIC was the pharmacodynamic index linked with efficacy, indicating that once-daily dosing in humans is feasible.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Wessam Abdelhady ◽  
Arnold S. Bayer ◽  
Rachelle Gonzales ◽  
Liang Li ◽  
Yan Q. Xiong

ABSTRACT We compared the efficacy of telavancin (TLV) and daptomycin (DAP) in an experimental rabbit endocarditis model caused by two clinically derived daptomycin-resistant (DAPr) methicillin-resistant Staphylococcus aureus (MRSA) strains. TLV treatment significantly reduced MRSA densities in all target tissues and increased the percentage of these organs rendered culture negative compared to those with the untreated control or DAP-treated animals. These results demonstrate that TLV has potent in vivo efficacy against DAPr MRSA isolates in this invasive endovascular infection model.


2016 ◽  
Vol 60 (8) ◽  
pp. 4764-4769 ◽  
Author(s):  
Alexander J. Lepak ◽  
David R. Andes

ABSTRACTDelafloxacin is a broad-spectrum anionic fluoroquinolone under development for the treatment of bacterial pneumonia. The goal of the study was to determine the pharmacokinetic/pharmacodynamic (PK/PD) targets in the murine lung infection model forStaphylococcus aureus,Streptococcus pneumoniae, andKlebsiella pneumoniae. Four isolates of each species were utilized forin vivostudies: forS. aureus, one methicillin-susceptible and three methicillin-resistant isolates;S. pneumoniae, two penicillin-susceptible and two penicillin-resistant isolates;K. pneumoniae, one wild-type and three extended-spectrum beta-lactamase-producing isolates. MICs were determined using CLSI methods. A neutropenic murine lung infection model was utilized for all treatment studies, and drug dosing was by the subcutaneous route. Single-dose plasma pharmacokinetics was determined in the mouse model after administration of 2.5, 10, 40, and 160 mg/kg. Forin vivostudies, 4-fold-increasing doses of delafloxacin (range, 0.03 to 160 mg/kg) were administered every 6 h (q6h) to infected mice. Treatment outcome was measured by determining organism burden in the lung (CFU counts) at the end of each experiment (24 h). The Hill equation for maximum effect (Emax) was used to model the dose-response data. The magnitude of the PK/PD index, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC), associated with net stasis and 1-log kill endpoints was determined in the lung model for all isolates. MICs ranged from 0.004 to 1 mg/liter. Single-dose PK parameter ranges include the following: for maximum concentration of drug in serum (Cmax), 2 to 70.7 mg/liter; AUC from 0 h to infinity (AUC0–∞), 2.8 to 152 mg · h/liter; half-life (t1/2), 0.7 to 1 h. At the start of therapy mice had 6.3 ± 0.09 log10CFU/lung. In control mice the organism burden increased 2.1 ± 0.44 log10CFU/lung over the study period. There was a relatively steep dose-response relationship observed with escalating doses of delafloxacin. Maximal organism reductions ranged from 2 log10to more than 4 log10. The median free-drug AUC/MIC magnitude associated with net stasis for each species group was 1.45, 0.56, and 40.3 forS. aureus,S. pneumoniae, andK. pneumoniae, respectively. AUC/MIC targets for the 1-log kill endpoint were 2- to 5-fold higher. Delafloxacin demonstratedin vitroandin vivopotency against a diverse group of pathogens, including those with phenotypic drug resistance to other classes. These results have potential relevance for clinical dose selection and evaluation of susceptibility breakpoints for delafloxacin for the treatment of lower respiratory tract infections involving these pathogens.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is a novel aminomethylcycline antibiotic with potent activity against Staphylococcus aureus, including methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We investigated the pharmacodynamic activity of omadacycline against 10 MSSA/MRSA strains in a neutropenic murine thigh model. The median 24-h area under the concentration-time curve (AUC)/MIC values associated with net stasis and 1-log kill were 21.9 and 57.7, respectively.


2015 ◽  
Vol 60 (2) ◽  
pp. 1114-1120 ◽  
Author(s):  
Chunna Guo ◽  
Xiaoping Liao ◽  
Mingru Wang ◽  
Feng Wang ◽  
Chaoqun Yan ◽  
...  

ABSTRACTStreptococcus suisserotype 2 is an emerging zoonotic pathogen and causes severe disease in both pigs and human beings. Cefquinome (CEQ), a fourth-generation cephalosporin, exhibits broad-spectrum activity against Gram-positive bacteria such asS. suis. This study evaluated thein vitroandin vivoantimicrobial activities of CEQ against four strains ofS. suisserotype 2 in a murine neutropenic thigh infection model. We investigated the effect of varied inoculum sizes (106to 108CFU/thigh) on the pharmacokinetic (PK)/pharmacodynamic (PD) indices and magnitudes of a particular PK/PD index or dose required for efficacy. Dose fractionation studies included total CEQ doses ranging from 0.625 to 640 mg/kg/24 h. Data were analyzed via a maximum effect (Emax) model using nonlinear regression. The PK/PD studies demonstrated that the percentage of time that serum drug levels were above the MIC of free drug (%ƒT>MIC) in a 24-h dosing interval was the primary index driving the efficacy of both inoculum sizes (R2= 91% andR2= 63%). CEQ doses of 2.5 and 40 mg/kg body weight produced prolonged postantibiotic effects (PAEs) of 2.45 to 8.55 h. Inoculum sizes had a significant influence on CEQ efficacy. Compared to the CEQ exposure and dosages in tests using standard inocula, a 4-fold dose (P= 0.006) and a 2-fold exposure time (P= 0.01) were required for a 1-log kill using large inocula of 108CFU/thigh.


Sign in / Sign up

Export Citation Format

Share Document