scholarly journals Efavirenz Is Predicted To Accumulate in Brain Tissue: an In Silico, In Vitro, and In Vivo Investigation

2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Paul Curley ◽  
Rajith K. R. Rajoli ◽  
Darren M. Moss ◽  
Neill J. Liptrott ◽  
Scott Letendre ◽  
...  

ABSTRACT Adequate concentrations of efavirenz in the central nervous system (CNS) are necessary to suppress viral replication, but high concentrations may increase the likelihood of CNS adverse drug reactions. The aim of this investigation was to evaluate the efavirenz distribution in the cerebrospinal fluid (CSF) and the brain by using a physiologically based pharmacokinetic (PBPK) simulation for comparison with rodent and human data. The efavirenz CNS distribution was calculated using a permeability-limited model on a virtual cohort of 100 patients receiving efavirenz (600 mg once daily). Simulation data were then compared with human data from the literature and with rodent data. Wistar rats were administered efavirenz (10 mg kg of body weight−1) once daily over 5 weeks. Plasma and brain tissue were collected for analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The median maximum concentrations of drug (C max) were predicted to be 3,184 ng ml−1 (interquartile range [IQR], 2,219 to 4,851 ng ml−1), 49.9 ng ml−1 (IQR, 36.6 to 69.7 ng ml−1), and 50,343 ng ml−1 (IQR, 38,351 to 65,799 ng ml−1) in plasma, CSF, and brain tissue, respectively, giving a tissue-to-plasma ratio of 15.8. Following 5 weeks of oral dosing of efavirenz (10 mg kg−1), the median plasma and brain tissue concentrations in rats were 69.7 ng ml−1 (IQR, 44.9 to 130.6 ng ml−1) and 702.9 ng ml−1 (IQR, 475.5 to 1,018.0 ng ml−1), respectively, and the median tissue-to-plasma ratio was 9.5 (IQR, 7.0 to 10.9). Although it is useful, measurement of CSF concentrations may give an underestimation of the penetration of antiretrovirals into the brain. The limitations associated with obtaining tissue biopsy specimens and paired plasma and CSF samples from patients make PBPK modeling an attractive tool for probing drug distribution.

1999 ◽  
Vol 43 (8) ◽  
pp. 1932-1934 ◽  
Author(s):  
Markus Nagl ◽  
Claudia Neher ◽  
Josef Hager ◽  
Bettina Pfausler ◽  
Erich Schmutzhard ◽  
...  

ABSTRACT Intraventricular application of vancomycin is an effective therapeutic regimen for the treatment of shunt-associated staphylococcal ventriculitis. We examined the in vitro activity of vancomycin at high concentrations against Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 in human cerebrospinal fluid samples. Time-kill curves revealed equal efficacies for concentrations of 10, 100, and 300 μg/ml, and incubation times of 24 to 48 h were needed to achieve a 3 log10 reduction of viable bacteria. A concentration of 5 μg/ml showed a slightly lower activity, but this difference was not significant. In an infant who was successfully treated for shunt-associated ventriculitis due to S. epidermidis by once-daily local administration of vancomycin (3 mg for 2 days and 5 mg for 4 days [0.5 to 0.8 mg/kg of body weight]) the in vivo kill kinetics were similar to those for the in vitro results. These results support time-dose regimens that provide trough vancomycin levels of 5 to 10 μg/ml.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Edward P. Garvey ◽  
Stephen R. Brand ◽  
Xin Xu ◽  
...  

ABSTRACTCryptococcal meningitis is a significant cause of morbidity and mortality in immunocompromised patients. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potentin vitroactivity againstCryptococcusspecies. Our objective was to evaluate thein vivoefficacy of VT-1129 against cryptococcal meningitis. Mice were inoculated intracranially withCryptococcus neoformans. Oral treatment with VT-1129, fluconazole, or placebo began 1 day later and continued for either 7 or 14 days, and brains and plasma were collected on day 8 or 15, 1 day after therapy ended, and the fungal burden was assessed. In the survival study, treatment continued until day 10 or day 28, after which mice were monitored off therapy until day 30 or day 60, respectively, to assess survival. The fungal burden was also assessed in the survival arm. VT-1129 plasma and brain concentrations were also measured. VT-1129 reached a significant maximal survival benefit (100%) at a dose of 20 mg/kg of body weight once daily. VT-1129 at doses of ≥0.3 mg/kg/day and each dose of fluconazole significantly reduced the brain tissue fungal burden compared to that in the control after both 7 and 14 days of dosing. The fungal burden was also undetectable in most mice treated with a dose of ≥3 mg/kg/day, even ≥20 days after dosing had stopped, in the survival arm. In contrast, rebounds in fungal burden were observed with fluconazole. These results are consistent with the VT-1129 concentrations, which remained elevated long after dosing had stopped. These data demonstrate the potential utility of VT-1129 to have a marked impact in the treatment of cryptococcal meningitis.


1980 ◽  
Vol 59 (s6) ◽  
pp. 453s-455s ◽  
Author(s):  
J. M. Cruickshank ◽  
G. Neil-Dwyer ◽  
M. M. Cameron ◽  
J. McAinsh

1. Sixteen neurosurgical patients received (oral) β-adrenoreceptor-blocking agents (β-receptor blockers) for 3–22 days. 2. Lipophilic β-receptor blockers (propranolol) and metoprolol appeared in cerebrospinal fluid at concentrations similar to the free drug plasma concentration. 3. Cerebrospinal fluid concentrations of β-receptor blockers were poor predictors of brain concentrations 4. Both lipophilic β-receptor blockers appeared in high concentrations in the brain: the brain/plasma ratio was approximately 15:1. 5. Hydrophilic atenolol appeared at low concentrations in brain tissue (about 20 times lower than the lipophilic β-receptor blockers): the brain/plasma ratio was approximately 0.1:1. 6. Central nervous system-related side effects associated mainly with lipophilic β-receptor blockers possibly result from high brain tissue concentrations.


1949 ◽  
Vol 95 (401) ◽  
pp. 930-944 ◽  
Author(s):  
H. Weil-Malherbe

The loss of consciousness in hypoglycaemia is generally regarded as a direct consequence of the fact that the brain cells are being increasingly deprived of glucose, their principal fuel. The prompt relief of symptoms by glucose administration led to a number of investigations on the effect of other substrates known to sustain the respiration of surviving brain slices in vitro. Amongst these are various mono- and disaccharides, and such acids as lactic, pyruvic, succinic or glutamic acid which may be formed from glucose in the course of its metabolism. It appeared, however, that, in contrast to their in vitro action, most of these substances, including glutamic acid, were unable to relieve the symptoms of hypoglycaemia in eviscerated or hepatectomized animals (Bollmann and Mann, 1931; Maddock, Hawkins and Holmes, 1939). Similarly, lactic and pyruvic acids were found to have no effect on the oxygen consumption of the brain or the comatose state of hypoglycaemic patients undergoing insulin shock therapy (Wortis and Goldfarb, 1940; Goldfarb and Wort is, 1941). It has been shown for several substrates, including glutamic acid, that their rate of diffusion from the blood stream into brain tissue was markedly slower than that of glucose, and that therefore the concentration necessary for the maintenance of nervous function was not reached (Klein, Hurwitz and Olsen, 1946; Klein and Olsen, 1947). In harmony with this are the observations of Fried berg and Greenberg (1947), and of Waelsch, Schwerin and Bessman (1949) that intravenously injected glutamic acid is not taken up by brain tissue. The differences between the in vitro and in vivo results seemed to be adequately explained by these experiments.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document