scholarly journals CTX-M-15-Producing Shewanella Species Clinical Isolate Expressing OXA-535, a Chromosome-Encoded OXA-48 Variant, Putative Progenitor of the Plasmid-Encoded OXA-436

2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Agnès B. Jousset ◽  
Laura Dabos ◽  
Rémy A. Bonnin ◽  
Delphine Girlich ◽  
Anaïs Potron ◽  
...  

ABSTRACT Shewanella spp. constitute a reservoir of antibiotic resistance determinants. In a bile sample, we identified three extended-spectrum-β-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae, and Shewanella sp. strain JAB-1) isolated from a child suffering from cholangitis. Our objectives were to characterize the genome and the resistome of the first ESBL-producing isolate of the genus Shewanella and determine whether plasmidic exchange occurred between the three bacterial species. Bacterial isolates were characterized using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), standard biochemical tools, and antimicrobial susceptibility testing. Shewanella sp. JAB-1 and ESBL gene-encoding plasmids were characterized using PacBio and Illumina whole-genome sequencing, respectively. The Shewanella sp. JAB-1 chromosome-encoded OXA-48 variant was cloned and functionally characterized. Whole-genome sequencing (WGS) of the Shewanella sp. clinical isolate JAB-1 revealed the presence of a 193-kb plasmid belonging to the IncA/C incompatibility group and harboring two ESBL genes, bla CTX-M-15 and bla SHV-2a. bla CTX-M-15 gene-carrying plasmids belonging to the IncY and IncR incompatibility groups were also found in the E. coli and K. pneumoniae isolates from the same patient, respectively. A comparison of the bla CTX-M-15 genetic environment indicated the independent origin of these plasmids and dismissed in vivo transfers. Furthermore, characterization of the resistome of Shewanella sp. JAB-1 revealed the presence of a chromosome-carried bla OXA-535 gene, likely the progenitor of the plasmid-carried bla OXA-436 gene, a novel bla OXA-48-like gene. The expression of bla OXA-535 in E. coli showed the carbapenem-hydrolyzing activity of OXA-535. The production of OXA-535 in Shewanella sp. JAB-1 could be evidenced using molecular and immunoenzymatic tests, but not with biochemical tests that monitor carbapenem hydrolysis. In this study, we have identified a CTX-M-15-producing Shewanella species that was responsible for a hepatobiliary infection and that is likely the progenitor of OXA-436, a novel plasmid-encoded OXA-48-like class D carbapenemase.

2019 ◽  
Vol 8 (40) ◽  
Author(s):  
Jamal Saad ◽  
Michel Drancourt ◽  
Margaret M. Hannan ◽  
Patrick J. Stapleton ◽  
Simon Grandjean Lapierre

Mycobacterium tilburgii is a fastidious mycobacterium which has previously been reported to cause severe disseminated infections. Genome sequencing of the M. tilburgii MEPHI clinical isolate yielded 3.14 Mb, with 66.3% GC content, and confirmed phylogenetic placement within the Mycobacterium simiae complex.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Tohru Miyoshi-Akiyama ◽  
Jatan Bahadur Sherchan ◽  
Yohei Doi ◽  
Maki Nagamatsu ◽  
Jeevan B. Sherchand ◽  
...  

ABSTRACT The global spread of ESBL-E. coli has been driven in large part by pandemic sequence type 131 (ST131). A recent study suggested that, within E. coli ST131, certain sublineages have disseminated worldwide with little association with their geographical origin, highlighting the complexity of the epidemiology of this pandemic clone. ST131 bacteria have also been classified into four virotypes based on the distribution of certain virulence genes. Information on virotype distribution in Asian ST131 strains is limited. We conducted whole-genome sequencing of ESBL-E. coli ST131 strains collected in Nepal and Japan, two Asian countries with a high and low prevalence of ESBL-E. coli, respectively. We systematically compared these ST131 genomes with those reported from other regions to gain insights into the molecular epidemiology of their spread and found the distinct phylogenetic characteristics of the spread of ESBL-E. coli ST131 in these two geographical areas of Asia. The global spread of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli (ESBL-E. coli) has largely been driven by the pandemic sequence type 131 (ST131). This study aimed to determine the molecular epidemiology of their spread in two Asian countries with contrasting prevalence. We conducted whole-genome sequencing (WGS) of ESBL-E. coli ST131 strains collected prospectively from Nepal and Japan, two countries in Asia with a high and low prevalence of ESBL-E. coli, respectively. We also systematically compared these genomes with those reported from other regions using publicly available WGS data for E. coli ST131 strains. Further, we conducted phylogenetic analysis of these isolates and all genome sequence data for ST131 strains to determine sequence diversity. One hundred five unique ESBL-E. coli isolates from Nepal (February 2013 to July 2013) and 76 isolates from Japan (October 2013 to September 2014) were included. Of these isolates, 54 (51%) isolates from Nepal and 11 (14%) isolates from Japan were identified as ST131 by WGS. Phylogenetic analysis based on WGS suggested that the majority of ESBL-E. coli ST131 isolates from Nepal clustered together, whereas those from Japan were more diverse. Half of the ESBL-E. coli ST131 isolates from Japan belonged to virotype C, whereas half of the isolates from Nepal belonged to a virotype other than virotype A, B, C, D, or E (A/B/C/D/E). The dominant sublineage of E. coli ST131 was H30Rx, which was most prominent in ESBL-E. coli ST131 isolates from Nepal. Our results revealed distinct phylogenetic characteristics of ESBL-E. coli ST131 spread in the two geographical areas of Asia, indicating the involvement of multiple factors in its local spread in each region. IMPORTANCE The global spread of ESBL-E. coli has been driven in large part by pandemic sequence type 131 (ST131). A recent study suggested that, within E. coli ST131, certain sublineages have disseminated worldwide with little association with their geographical origin, highlighting the complexity of the epidemiology of this pandemic clone. ST131 bacteria have also been classified into four virotypes based on the distribution of certain virulence genes. Information on virotype distribution in Asian ST131 strains is limited. We conducted whole-genome sequencing of ESBL-E. coli ST131 strains collected in Nepal and Japan, two Asian countries with a high and low prevalence of ESBL-E. coli, respectively. We systematically compared these ST131 genomes with those reported from other regions to gain insights into the molecular epidemiology of their spread and found the distinct phylogenetic characteristics of the spread of ESBL-E. coli ST131 in these two geographical areas of Asia.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Hiroaki Shigemura ◽  
Eri Sakatsume ◽  
Tsuyoshi Sekizuka ◽  
Hiroshi Yokoyama ◽  
Kunihiko Hamada ◽  
...  

ABSTRACT Dissemination of extended-spectrum-cephalosporin (ESC)-resistant Salmonella, especially extended-spectrum-β-lactamase (ESBL)-producing Salmonella, is a concern worldwide. Here, we assessed Salmonella carriage by food workers in Japan to clarify the prevalence of ESC-resistant Salmonella harboring blaCTX-M. We then characterized the genetic features, such as transposable elements, of blaCTX-M-harboring plasmids using whole-genome sequencing. A total of 145,220 stool samples were collected from food workers, including cooks and servers from several restaurants, as well as food factory workers, from January to October 2017. Isolated salmonellae were subjected to antimicrobial susceptibility testing (disk diffusion method), and whole-genome sequencing was performed for Salmonella strains harboring blaCTX-M. Overall, 164 Salmonella isolates (0.113%) were recovered from 164 samples, from which we estimated that at least 0.113% (95% confidence interval [CI]: 0.096 to 0.132%) of food workers may carry Salmonella. Based on this estimation, 3,473 (95% CI = 2,962 to 4,047) individuals among the 3,075,330 Japanese food workers are likely to carry Salmonella. Of the 158 culturable isolates, seven showed resistance to ESCs: three isolates harbored blaCMY-2 and produced AmpC β-lactamase, while four ESBL-producing isolates harbored blaCTX-M-14 (n = 1, Salmonella enterica serovar Senftenberg) or blaCTX-M-15 (n = 3, S. enterica serovar Haardt). blaCTX-M-15 was chromosomally located in the S. Haardt isolates, which also contained ISEcp1, while the S. Senftenberg isolate contained an IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid plasmid carrying blaCTX-M-14 along with ISEcp1. This study indicates that food workers may be a reservoir of ESBL-producing Salmonella and associated genes. Thus, these workers may contribute to the spread of blaCTX-M via plasmids or mobile genetic elements such as ISEcp1. IMPORTANCE Antimicrobial-resistant Salmonella bacteria arise in farm environments through imprudent use of antimicrobials. Subsequently, these antimicrobial-resistant strains, such as extended-spectrum-β-lactamase (ESBL)-producing Salmonella, may be transmitted to humans via food animal-derived products. Here, we examined Salmonella carriage among food handlers in Japan. Overall, 164 of 145,220 fecal samples (0.113%) were positive for Salmonella. Among the 158 tested isolates, four were identified as ESBL-producing isolates carrying ESBL determinants blaCTX-M-15 or blaCTX-M-14. In all cases, the genes coexisted with ISEcp1, regardless of whether they were located on the chromosome or on a plasmid. Our findings suggest that food workers may be a reservoir of ESBL-producing strains and could contribute to the spread of resistance genes from farm-derived Salmonella to other bacterial species present in the human gut.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Aaron E. Lucas ◽  
Ryota Ito ◽  
Mustapha M. Mustapha ◽  
Christi L. McElheny ◽  
Roberta T. Mettus ◽  
...  

ABSTRACTFosfomycin maintains activity against mostEscherichia coliclinical isolates, but the growth ofE. colicolonies within the zone of inhibition around the fosfomycin disk is occasionally observed upon susceptibility testing. We aimed to estimate the frequency of such nonsusceptible inner colony mutants and identify the underlying resistance mechanisms. Disk diffusion testing of fosfomycin was performed on 649 multidrug-resistantE. coliclinical isolates collected between 2011 and 2015. For those producing inner colonies inside the susceptible range, the parental strains and their representative inner colony mutants were subjected to MIC testing, whole-genome sequencing, reverse transcription-quantitative PCR (qRT-PCR), and carbohydrate utilization studies. Of the 649E. coliclinical isolates, 5 (0.8%) consistently produced nonsusceptible inner colonies. Whole-genome sequencing revealed the deletion ofuhpTencoding hexose-6-phosphate antiporter in 4 of theE. coliinner colony mutants, while the remaining mutant contained a nonsense mutation inuhpA. The expression ofuhpTwas absent in the mutant strains withuhpTdeletion and was not inducible in the strain with theuhpAmutation, unlike in its parental strain. All 5 inner colony mutants had reduced growth on minimal medium supplemented with glucose-6-phosphate. In conclusion, fosfomycin-nonsusceptible inner colony mutants can occur due to the loss of function or induction of UhpT but are rare among multidrug-resistantE. coliclinical strains. Considering that these mutants carry high biological costs, we suggest that fosfomycin susceptibility of strains that generate inner colony mutants can be interpreted on the basis of the zone of inhibition without accounting for the inner colonies.


2015 ◽  
Vol 53 (11) ◽  
pp. 3530-3538 ◽  
Author(s):  
Mithila Ferdous ◽  
Kai Zhou ◽  
Alexander Mellmann ◽  
Stefano Morabito ◽  
Peter D. Croughs ◽  
...  

The ability ofEscherichia coliO157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably thestxgene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collectedstx-positive andstx-negative variants ofE. coliO157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of theeaegene but lack of thebfpAgene, thestx-negative isolates were considered atypical enteropathogenicE. coli(aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producingE. coli(STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF)stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF)stx-negative isolate clustered together with NSF STEC isolates. Therefore, thesestx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence ofstxgenes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 972
Author(s):  
Hassan Al Mana ◽  
Sathyavathi Sundararaju ◽  
Clement K. M. Tsui ◽  
Andres Perez-Lopez ◽  
Hadi Yassine ◽  
...  

Antibiotic resistance is a growing public health problem globally, incurring health and cost burdens. The occurrence of antibiotic-resistant bacterial infections has increased significantly over the years. Gram-negative bacteria display the broadest resistance range, with bacterial species expressing extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases. All carbapenem-resistant Enterobacteriaceae (CRE) isolates from pediatric urinary tract infections (UTIs) between October 2015 and November 2019 (n = 30). All isolates underwent antimicrobial resistance phenotypic testing using the Phoenix NMIC/ID-5 panel, and carbapenemase production was confirmed using the NG-Test CARBA 5 assay. Whole-genome sequencing was performed on the CREs. The sequence type was identified using the Achtman multi-locus sequence typing scheme, and antimicrobial resistance markers were identified using ResFinder and the CARD database. The most common pathogens causing CRE UTIs were E. coli (63.3%) and K. pneumoniae (30%). The most common carbapenemases produced were OXA-48-like enzymes (46.6%) and NDM enzymes (40%). Additionally, one E. coli harbored IMP-26, and two K. pneumoniae possessed mutations in ompK37 and/or ompK36. Lastly, one E. coli had a mutation in the marA porin and efflux pump regulator. The findings highlight the difference in CRE epidemiology in the pediatric population compared to Qatar’s adult population, where NDM carbapenemases are more common.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Racha Beyrouthy ◽  
Frederic Robin ◽  
Aude Lessene ◽  
Igor Lacombat ◽  
Laurent Dortet ◽  
...  

ABSTRACT The spread of mcr-1-encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1-encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France.


2019 ◽  
Vol 8 (30) ◽  
Author(s):  
Edouard Munier ◽  
Hélène Licandro-Séraut ◽  
Christine Achilleos ◽  
Rémy Cachon ◽  
Eric Beuvier

Clostridium tyrobutyricum is the main bacterial species leading to the late blowing defect, a major cause of spoilage in semihard and hard cheeses. This study reports the complete genome sequencing, assembly, and annotation of C. tyrobutyricum strain Cirm BIA 2237, formerly called CNRZ 608, isolated from silage.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Jay Worley ◽  
Jianghong Meng ◽  
Marc W. Allard ◽  
Eric W. Brown ◽  
Ruth E. Timme

ABSTRACTUsing whole-genome sequence (WGS) data from the GenomeTrakr network, a globally distributed network of laboratories sequencing foodborne pathogens, we present a new phylogeny ofSalmonella entericacomprising 445 isolates from 266 distinct serovars and originating from 52 countries. This phylogeny includes two previously unidentifiedS. entericasubsp.entericaclades. Serovar Typhi is shown to be nested within clade A. Our findings are supported by both phylogenetic support, based on a core genome alignment, and Bayesian approaches, based on single-nucleotide polymorphisms. Serovar assignments were refined byin silicoanalysis using SeqSero. More than 10% of serovars were either polyphyletic or paraphyletic. We found variable genetic content in these isolates relating to gene mobilization and virulence factors which have different distributions within clades. Gifsy-1- and Gifsy-2-like phages appear more prevalent in clade A; other viruses are more evenly distributed. Our analyses reveal IncFII is the predominant plasmid replicon inS. enterica. Few core or clade-defining virulence genes are observed, and their distributions appear probabilistic in nature. Together, these patterns demonstrate that genetic exchange withinS. entericais more extensive and frequent than previously realized, which significantly alters how we view the genetic structure of the bacterial species.IMPORTANCERapid improvements in nucleotide sequencing access and affordability have led to a drastic increase in availability of genetic information. This information will improve the accuracy of molecular descriptions, including serovars, withinS. enterica. Although the concept of serovars continues to be useful, it may have more significant limitations than previously understood. Furthermore, the discrete absence or presence of specific genes can be an unstable indicator of phylogenetic identity. Whole-genome sequencing provides more rigorous tools for assessing the distributions of these genes. Our phylogenetic and genetic content analyses reveal how active genetic elements are dynamically distributed within a species, allowing us to better understand genetic reservoirs and underlying bacterial evolution.


Sign in / Sign up

Export Citation Format

Share Document