Azithromycin resistance in Shiga-toxin Producing Escherichia coli in France between 2004 and 2020 and detection of mef (C)- mph (G) genes.

Author(s):  
Etienne Bizot ◽  
Aurélie Cointe ◽  
Philippe Bidet ◽  
Patricia Mariani-Kurkdjian ◽  
Claire Amaris Hobson ◽  
...  

We described and characterized Shiga-toxin-producing Escherichia coli (STEC) strains with high levels of resistance to azithromycin isolated in France, between 2004 and 2020. Nine of 1715 (0.52%) STEC strains were resistant to azithromycin, with an increase since 2017. One isolate carried a plasmid-borne mef (C)- mph( G) genes association, described here for the first time in E. coli. Azithromycin resistance, although rare, needs consideration as this treatment may be useful in case of STEC infection.

2009 ◽  
Vol 21 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Chitrita DebRoy ◽  
Elisabeth Roberts ◽  
William Scheuchenzuber ◽  
Subhashinie Kariyawasam ◽  
Bhushan M. Jayarao

Escherichia coli carrying the F18 fimbriae colonize the small intestine of pigs and cause postweaning diarrhea and edema disease. There are 2 closely related antigenic variants of F18, F18ab, and F18ac. While F18ab-positive strains are known to be associated with edema disease, E. coli–carrying F18ac are known to cause diarrhea. One hundred ninety-eight E. coli isolates obtained from cases of diarrhea and edema disease in pigs isolated from feces or intestine were screened for the presence of the fedA gene encoding for F18 fimbriae. To distinguish between F18ab and F18ac, the fedA gene was sequenced in 69 F18-positive isolates/strains. The translated protein sequences of the fedA gene in the 2 variants differ; F18ac protein carries proline at amino acid residue 121, which is substituted or missing in F18ab. The F18ab- and F18ac-positive E. coli strains were compared for the presence of virulence attributes, serotypes of the isolates, and relatedness between the strains. Contrary to earlier reports that E. coli F18ab-positive strains mostly express Shiga toxin and F18ac-positive strains generally express enterotoxins, the current report shows conclusively for the first time that both variant types may carry genes for Shiga toxins and/or enterotoxins. Monoclonal antibodies produced against F18ab or F18ac fimbriae could not distinguish the strains carrying the 2 variants. Therefore, it was concluded that either of the 2 F18 variants, F18ab or F18ac, may be involved in causing postweaning diarrhea or edema disease in pigs.


2000 ◽  
Vol 68 (9) ◽  
pp. 4850-4855 ◽  
Author(s):  
Maite Muniesa ◽  
Jürgen Recktenwald ◽  
Martina Bielaszewska ◽  
Helge Karch ◽  
Herbert Schmidt

ABSTRACT An infectious Shiga toxin (Stx) 2e-converting bacteriophage (φP27) was isolated from Stx2e-producing Escherichia coliONT:H− isolate 2771/97 originating from a patient with diarrhea. The phage could be transduced to E. colilaboratory strain DH5α, and we could show that lysogens were able to produce biologically active toxin in a recA-dependent manner. By DNA sequence analysis of a 6,388-bp HindIII restriction fragment of φP27, we demonstrated that thestx 2e gene was located directly downstream ofileZ and argO tRNA genes. Although no analogue of an antiterminator Q encoding gene was present on this fragment, a lysis cassette comprising two holin genes which are related to the holin genes of Pseudomonas aeruginosa phage φCTX and a gene homologous to the endolysin gene gp19 of phage PS3 were detected. The results of our study demonstrated for the first time that Stx2e can be encoded in the genome of an infectious bacteriophage.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Selene Marozzi ◽  
Paola De Santis ◽  
Sarah Lovari ◽  
Roberto Condoleo ◽  
Stefano Bilei ◽  
...  

In recent years, the incidence of foodborne diseases caused by shiga toxin-producing <em>Escherichia coli</em> (STEC) has increased globally. For this reason, within the specific regional control plan for the detection of STEC in food products in Italy, the presence of STEC in unpasteurized milk cheeses was investigated. In total 203 samples obtained from March 2011 to December 2013 were analysed, with two standard methods (ISO 16654:2001 and ISO 13136:2012). Two strains of <em>E. coli</em> O157 were isolated (2/161, 1.2%) but did not carry any virulence-associated genes and 22 <em>stx</em>-positive samples (22/146, 15.1%) were detected in enrichment cultures, mostly from ovine cheeses. Only two strains isolated from different ovine cheeses carried <em>stx</em> gene and none of these was <em>eae</em>-positive. This study confirms the presence of <em>stx</em>-positive <em>E. coli</em> and suggests that this type of food cannot be excluded as a potential vehicle of STEC.


2018 ◽  
Vol 9 ◽  
Author(s):  
Rosely Martins Gioia-Di Chiacchio ◽  
Marcos Paulo Vieira Cunha ◽  
Lilian Rose Marques de Sá ◽  
Yamê Minieiro Davies ◽  
Camila Bueno Pacheco Pereira ◽  
...  

2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


2020 ◽  
Vol 8 (11) ◽  
pp. 1662
Author(s):  
Zachary R. Stromberg ◽  
Rick E. Masonbrink ◽  
Melha Mellata

Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.


2016 ◽  
Vol 14 (1) ◽  
pp. 63-68 ◽  
Author(s):  
MM Akter ◽  
S Majumder ◽  
KH MNH Nazir ◽  
M Rahman

Shiga toxin-producing Escherichia coli (STEC) are zoonotically important pathogen which causes hemorrhagic colitis, diarrhea, and hemolytic uremic syndrome in animals and humans. The present study was designed to isolate and identify the STEC from fecal samples of diarrheic cattle. A total of 35 diarrheic fecal samples were collected from Bangladesh Agricultural University (BAU) Veterinary Teaching Hospital. The samples were primarily examined for the detection of E. coli by cultural, morphological and biochemical characteristics, followed by confirmation of the isolates by Polymerase Chain Reaction (PCR) using gene specific primers. Later, the STEC were identified among the isolated E. coli through detection of Stx-1 and Stx-2 genes using duplex PCR. Out of 35 samples, 25 (71.43%) isolates were confirmed to be associated with E. coli, of which only 7 (28%) isolates were shiga toxin producers, and all of them were positive for Stx-1. However, no Stx-2 positive isolate could be detected. From this study, it may be concluded that cattle can act as a reservoir of STEC which may transmit to human or other animals.J. Bangladesh Agril. Univ. 14(1): 63-68, June 2016


2020 ◽  
Author(s):  
Ivan Nastasijevic ◽  
John W. Schmidt ◽  
Marija Boskovic ◽  
Milica Glisic ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACTShiga toxin (stx) -producing Escherichia coli (STEC) are foodborne pathogens that have a significant impact on public health, with those possessing the attachment factor intimin (eae) referred to as enterohemorrhagic E. coli (EHEC) associated with life threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n=1536) at two U.S. pork processors were sampled once per season at three stages of harvest (post-stunning skins; post-scald carcasses; chilled carcasses) then examined using PCR for stx and eae, aerobic plate count (APC) and Enterobacteriaceae counts (EBC). Skins, post-scald, and chilled carcasses had prevalence of stx (85.3, 17.5, and 5.4%, respectively), with 82.3, 7.8, and 1.7% respectively, having stx and eae present. All stx positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroup O121, O8, and O91(63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00 and 2.50 log10 CFU/100 cm2 respectively. A seasonal effect was observed with STEC prevalence lower (P < 0.05) in winter. The data from this study shows significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx+eae) from 82.3% to 1.7% within slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCESeven serogroups of Shiga toxin-producing Escherichia coli (STEC) are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease causing STEC, enterohemorrhagic E. coli (EHEC), demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


2011 ◽  
Vol 16 (31) ◽  
Author(s):  
A M Hauri ◽  
U Götsch ◽  
I Strotmann ◽  
J Krahn ◽  
G Bettge-Weller ◽  
...  

During the recent outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 in Germany most cases notified in the State of Hesse (6 million inhabitants) were linked to satellite clusters or had travelled to the outbreak area in northern Germany. Intensified surveillance was introduced to rapidly identify cases not linked to known clusters or cases and thus to obtain timely information on possible further contaminated vehicles distributed in Hesse, as well to describe the risk of secondary transmission among known cases. As of 2 August 2011*, 56 cases of haemolytic uraemic syndrome (HUS) including two fatal cases, and 124 cases of STEC gastroenteritis meeting the national case definitions have been reported in Hesse. Among the 55 HUS and 81 STEC gastroenteritis cases that met the outbreak case definition, one HUS case and eight STEC gastroenteritis cases may have acquired their infection through secondary transmission. They include six possible transmissions within the family, two possible nosocomial and one possible laboratory transmission. Our results do not suggest an increased transmissibility of the outbreak strain compared to what is already known about E. coli O157 and other STEC serotypes.


Sign in / Sign up

Export Citation Format

Share Document